Differentiation of a Differential Form
We saw in constants_existence_for_1-forms_multiplication that, if is a form in , then there exists such that
To figure what is, for example, we need to determine what does to the vectors and . Let us compute assuming that
\begin{eqnarray} d\omega(\langle1,0,0\rangle, \langle0,1,0\rangle)&=&\dfrac{\partial\omega}{\partial\langle1,0,0\rangle}(\langle0,1,0\rangle)- \dfrac{\partial\omega}{\partial\langle0,1,0\rangle}(\langle1,0,0\rangle)\\ &=&\left\langle\dfrac{\partial g}{\partial x},\dfrac{\partial g}{\partial y},\dfrac{\partial g}{\partial z}\right\rangle\cdot\langle1,0,0\rangle-\left\langle\dfrac{\partial f}{\partial x},\dfrac{\partial f}{\partial y},\dfrac{\partial f}{\partial z}\right\rangle\cdot\langle0,1,0\rangle\\ &=&\dfrac{\partial f}{\partial x}-\dfrac{\partial f}{\partial y}\;. \end{eqnarray}
Analogously, we have
\begin{eqnarray} d\omega(\langle0,1,0\rangle, \langle0,0,1\rangle)&=&\dfrac{\partial h}{\partial y}-\dfrac{\partial g}{\partial z}\\ d\omega(\langle1,0,0\rangle, \langle0,0,1\rangle)&=&\dfrac{\partial h}{\partial x}-\dfrac{\partial f}{\partial z}\;. \end{eqnarray}Hence,