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Foreword 

A foreword is essentially an introductory note penned by an invited writer, 
scholar, or public figure. As a new textbook does represent a pedagogical 
experiment, a foreword can serve to illuminate the author's intentions and 
provide a bit of insight regarding the potential impact of the book. 

Alfred James Lotka — the famous chemist, demographer, ecologist, and 
mathematician — once stated that "The preface is that part of a book 
which is written last, placed first, and read least." Although the follow
ing paragraphs do satisfy Lotka's first two conditions, I hope they will not 
satisfy the third. For here we have a legitimate chance to adopt the sort 
of philosophical viewpoint so often avoided in modern scientific treatises. 
This is partly because the present authors, Lebedev and Cloud, have ac
cepted the challenge of unifying three fundamental subjects that were all 
rooted in a philosophically-oriented century, and partly because the varia
tional method itself has been the focus of controversy over its philosophical 
interpretation. The mathematical and philosophical value of the method 
is anchored in its coordinate-free formulation and easy transformation of 
parameters. In mechanics it greatly facilitates both the formulation and 
solution of the differential equations of motion. It also serves as a rigor
ous foundation for modern numerical approaches such as the finite element 
method. Through some portion of its history, the calculus of variations 
was regarded as a simple collection of recipes capable of yielding neces
sary conditions of minimum for interesting yet very particular functionals. 
But simple application of such formulas will not suffice for reliable solu
tion of modern engineering problems — we must also understand various 
convergence-related issues for the popular numerical methods used, say, in 
elasticity. The basis for this understanding is functional analysis: a rel
atively young branch of mathematics pioneered by Hilbert, Wiener, von 
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Neumann, Riesz, and many others. It is worth noting that Stefan Banach, 
who introduced what we might regard as the core of modern functional 
analysis, lectured extensively on theoretical mechanics; it is therefore not 
surprising that he knew exactly what sort of mathematics was most needed 
by engineers. 

For a number of years I have delivered lecture courses on system dynam
ics and control to students and researchers interested in Mechatronics at 
Johannes Kepler University of Linz, the Technical University of Vienna, and 
the Technical University of Graz. Mechatronics is an emerging discipline, 
frequently described as a mixture of mechanics, electronics, and comput
ing; its principal applications are to controlled mechanical devices. Some 
engineers hold the mistaken view that mechatronics contains nothing new, 
since both automatic control and computing have existed for a long time. 
But I believe that mechatronics is a philosophy which happens to overlap 
portions of the above-mentioned fields without belonging to any of them 
exclusively. Mechanics, of course, rests heavily on the calculus of variations, 
and has a long history dating from the works of Bernoulli, Leibniz, Euler, 
Lagrange, Fermat, Gauss, Hamilton, Routh, and the other pioneers. The 
remaining disciplines — electronics and computing — are relatively young. 
Optimal control theory has become involved in mechatronics for obvious 
reasons: it extends the idea of optimization embodied in the calculus of 
variations. This involves a significant extension of the class of problems to 
which optimization can be applied. It also involves an extension of tradi
tional "smooth" analysis tools to the kinds of "non-smooth" tools needed 
for high-powered computer applications. So again we see how the tools of 
modern mathematics come into contact with those of computing, and are 
therefore of concern to mechatronics. 

Teaching a combination of the calculus of variations and functional anal
ysis to students in engineering and applied mathematics is a real challenge. 
These subjects require time, dedication, and creativity from an instructor. 
They also take special care if the audience wishes to understand the rigor
ous mathematics used at the frontier of contemporary research. A principal 
hindrance has been the lack of a suitable textbook covering all necessary 
topics in a unified and sensible fashion. The present book by Professors 
Lebedev and Cloud is therefore a welcome addition to the literature. It is 
lucid, well-connected, and concise. The material has been carefully cho
sen. Throughout the book, the authors lay stress on central ideas as they 
present one powerful mathematical tool after another. The reader is thus 
prepared not only to apply the material to his or her own work, but also 



Foreword vn 

to delve further into the literature if desired. 
An interesting feature of the book is that optimal control theory arises as 

a natural extension of the calculus of variations, having a more extensive set 
of problems and different methods for their solution. Functional analysis, 
of course, is the basis for justifying the methods of both the calculus of 
variations and optimal control theory; it also permits us to qualitatively 
describe the properties of complete physical problems. Optimization and 
extreme principles run through the entire book as a unifying thread. 

The book could function as both (i) an attractive textbook for a course 
on engineering mathematics at the graduate level, and (ii) a useful refer
ence for researchers in mechanics, electrical engineering, computer science, 
mechatronics, or related fields such as mechanical, civil, or aerospace engi
neering, physics, etc. It may also appeal to those mathematicians who lean 
toward applications in their work. The presence of homework problems at 
the end of each chapter will facilitate its use as a textbook. 

As Poincare once said, mathematicians do not destroy the obstacles 
with which their science is spiked, but simply push them toward its bound
ary. I hope that some particular obstacles in the unification of these three 
branches of science (the calculus of variations, optimal control, and func
tional analysis) and technology (mechanics, control, and computing) will 
continue to be pushed out as far as possible. Professors Lebedev and Cloud 
have made a significant contribution to this process by writing the present 
book. 

Ardeshir Guran 
Wien, Austria 
March, 2003 
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Preface 

The successful preparation of engineering students, regardless of specialty, 
depends heavily upon the basics taught in the junior year. The general 
mathematical ability of students at this level, however, often forces instruc
tors to simplify the presentation. Requiring mathematical content higher 
than simple calculus, engineering lecturers must present this content in a 
rapid, often cursory fashion. A student may see several different lecturers 
present essentially the same material but in very different guises. As a re
sult "engineering mathematics" often comes to be perceived as a succession 
of procedures and conventions, or worse, as a mere bag of tricks. A student 
having this preparation is easily confounded at the slightest twist of a prob
lem. Next, the introduction of computers has brought various approximate 
methods into engineering practice. As a result the standard mathematical 
background of a modern engineer should contain tools that belonged to 
the repertoire of a scientific researcher 30-40 years ago. Computers have 
taken on many functions that were once considered necessary skills for the 
engineer; no longer is it essential for the practitioner to be able to carry 
out extensive calculations manually. Instead, it has become important to 
understand the background behind the various methods in use: how they 
arrive at approximations, in what situations they are applicable, and how 
much accuracy they can provide. In large part, for solving the boundary 
value problems of mathematical physics, the answers to such questions re
quire knowledge of the calculus of variations and functional analysis. The 
calculus of variations is the background for the widely applicable method of 
finite elements; in addition, it can be considered as the first part of the the
ory of optimal control. Functional analysis allows us to deal with solutions 
of problems in more or less the same way we deal with vectors in space. A 
unified treatment of these portions of mathematics, together with examples 

IX 
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of how to exploit them in mechanics, is the objective of this book. In this 
way we hope to contribute in some small way to the preparation of the cur
rent and next generations of engineering analysts. The book is introductory 
in nature, but should provide the reader with a fairly complete picture of 
the area. Our choice of material is centered around various minimum and 
optimization problems that play extremely important roles in physics and 
engineering. Some of the tools presented are absolutely classical, some are 
quite recent. We collected this material to demonstrate the unity of classi
cal and modern methods, and to enable the reader to understand modern 
work in this important area. 

We would like to thank the World Scientific editorial staff — in par
ticular, Mr. Yeow-Hwa Quek — for assistance in the production of this 
book. The book appears in the Series on Stability, Vibration and Control 
of Systems. We owe special thanks to Professors Ardeshir Guran (series 
Editor-in-Chief, Institute of Structronics in Canada and Johannes Kepler 
University of Linz in Austria) and Georgios E. Stavroulakis (series Editor, 
University of Ioannina and Technical University of Braunschweig) for their 
valuable comments and encouragement. Finally, we are grateful to Natasha 
Lebedeva and Beth Lannon-Cloud for their patience and support. 

Department of Mechanics and Mathematics L.P. Lebedev 

Rostov State University, Russia 

& 

Department of Mathematics 
National University of Colombia, Colombia 

Department of Electrical and Computer Engineering M.J. Cloud 
Lawrence Technological University, USA 
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Chapter 1 

Basic Calculus of Variations 

1.1 Introduction 

Optimization is a universal human goal. Students would like to learn more, 
receive better grades, and have more free time; professors (at least some of 
them!) would like to give better lectures, see students learn more, receive 
higher pay, and have more free time. These are the optimization problems 
of real life. In mathematics, optimization makes sense only when formulated 
in terms of a function f(x) or other expression. We then seek to minimize 
the value of the expression.1 

In this book we consider the minimization of junctionals. The notion of 
functional generalizes that of function. Although generalization does yield 
results of greater generality, as a rule we cannot expect these to be sharper 
in particular cases. So to understand what we can expect of the calculus 
of variations, we should review the minimization of ordinary functions. We 
assume everything to be sufficiently differentiable for our purposes. 

Let us begin with the one-variable case y = f(x). First we recall some 
terminology. 

Definition 1.1.1 The function f(x) is said to have a local minimum at 
a point XQ if there is a neighborhood (XQ —d,xo + d) in which f(x) > f(xo). 
We call XQ the global minimum of f(x) on \a, b] if f(x) > f(xo) holds for 
all x £ [a,b]. 

The necessary condition for a differentiable function f(x) to have a local 
minimum at xo is 

/ '(xo) = 0. (1.1.1) 
1Since the problem of maximum of / is equivalent to the problem of minimum of —/, 

it suffices to discuss only the latter type of problem. 

1 
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A simple and convenient sufficient condition is 

f"(x0) > 0. (1.1.2) 

Unfortunately, no available criterion for a local minimum is both sufficient 
and necessary. Our approach, then, is to solve (1.1.1) for possible points 
of local minimum of f(x), and then to test these using one of the available 
sufficient conditions. 

The global minimum on [a, b] can be attained at a point of local min
imum. However there are two points, a and 6, where (1.1.1) may not be 
fulfilled (because the corresponding neighborhoods are one-sided) but where 
the global minimum may still occur. Hence given a differentiable function 
f(x) on [a, b], we first find all Xk at which f'{xk) = 0. We then calculate 
/ (a ) , f(b), and f(xk) at the Xk, and choose the minimal one. This gives 
us the global minimum. We see that although this method can be formu
lated as an algorithm suitable for machine computation, it still cannot be 
reduced to the solution of an equation or system of equations. 

These tools are extended to multivariable functions and to more com
plex objects called functionals. A simple example of a functional is an 
integral whose integrand depends on an unknown function and its deriva
tive. Since the extension of ordinary minimization methods to functionals 
is not straightforward, we continue to examine some notions that come to 
us from calculus. 

For a continuously differentiable function y = f(x) we have Lagrange's 
formula 

f{x + h)-f(x) = f(x + 6h)h ( O < 0 < 1 ) . 

Since continuity of / ' means that 

f'(x + eh)-f'{x) = n{x,9,h) ->0 as / i-» 0, 

we have 

f(x + h) = f(x) + f'{x)h + n{x, 8, h) h 

where r\{x, 8, h) —• 0 as h —* 0. The term ri(x, 8, h) h is Lagrange's form 
of the remainder. There is also Peano's form 

f(x + h) = f(x) + f'(x)h + o(h), 
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which means that2 

l i m f(x + h)- fjx) - f'(x)h = o 

h^O h 

The principal (linear in h) part of the increment of / is the first differ
ential of / at x. Writing dx = h we have 

df = f'(x)dx. 

"Infinitely small" quantities are not implied by this notation; here dx is a 
finite increment of x (when used for approximation it should be sufficiently 
small). The first differential is invariant under the change of variable x — 
<p(s): 

df = nx)dx = diM^ds, 
ds 

where dx = </?'(s) ds. 
Lagrange's formula extends to functions having m continuous deriva

tives in some neighborhood of x. The extension for x + h lying in the 
neighborhood is Taylor's formula: 

f(X + h) = fix) + ±f'(X)h + ^f"(x)h* + ••• + ^-^^fim-l){x)hm-l 

+ —.f(m){x + eh)hm ( O < 0 < 1 ) . 
m! 

Continuity of /^ m ' at x yields 

f{m)(x + 6h) - f{m)(x) = rm{x,e,h)^0 as /i -> 0, 

hence Taylor's formula becomes 

fix + h) = fix) + ±f'ix)h + ±f"ix)h2 + ••• + ^f{m\xW 

+ —,rmix,6,h)hT 

ml 

with remainder in Lagrange form. When we do not wish to carefully display 
the dependence of the remainder on the parameters in Taylor's formula, we 

2We write g(x) = o(r(a;)) as x —• xo if g(x)/r(x) —> 0 as x —> XQ. See § 1.9 for further 
discussion of this notation. 
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use Peano's form 

f{x + h)= f(x) + ±f'(x)h + ^f"(x)h2 + ••• + -L / ( - ) (x ) / i m + o(hm). 

(1.1.3) 
The conditions of minimum (1.1.1)—(1.1.2) can be derived via Taylor's 

formula for a twice continuously differentiable function having 

f(x + h)- f{x) = f'(x)h + \f"(x)h2 + oih2). 

Indeed f(x + h) — f(x) > 0 if a; is a local minimum. The right-hand 
side has the form ah + bh2 + oih2). If a = f'(x) ^ 0, for example when 
a < 0, it is clear that for h < ho with sufficiently small ho the sign of 
fix + h) — fix) is determined by that of ah; hence for 0 < h < ho we have 
f(x + h) — f(x)<0, which contradicts the assertion that x minimizes / . 
The case a > 0 is similar, and we arrive at the necessary condition (1.1.1). 
Returning to the increment formula we now get 

fix + h)-fix)=1-f"ix)h2+oih2). 

The term /"(x)/i2 defines the value of the right-hand side when h is suffi
ciently close to 0, hence when f"{x) > 0 we see that for sufficiently small 
\h\^0 

fix + h)- fix) > 0. 

So (1.1.2) is sufficient for x to be a minimum point of / . 

A function in n variables 

We cannot expect more from the theory of minimum of a function y = / (x ) 
with x = ( x i , . . . ,xn).

3 

We say that / (x ) has a global minimum at the point x* if the inequality 

/(x*) < /(x* + h) (1.1.4) 

holds for all nonzero h = (hi,..., hn) € M™. We call x* a local minimum if 
there exists p > 0 such that (1.1.4) holds whenever 

||h|| = (ft? + ••• + /£)!/*< p. 

3We will use the notations / ( x ) and f(xi,... ,xn) interchangeably. 
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Let x* be a minimum point of a continuously differentiable function / (x ) . 
Then f(x\, x\, • • •, x„) is a function in one variable X\ and takes its mini
mum at x\. It follows that df jdx\ — 0 at x\ = x\. Similarly we see that 
the rest of the partial derivatives of / are zero at x*: 

dxi 
= 0, * = 1, (1.1.5) 

This is a necessary condition of minimum for a continuously differentiable 
function in n variables at the point x*. 

To get sufficient conditions we must extend Taylor's formula. Let / (x) 
possess all continuous derivatives up to order m > 2 in some neighborhood 
of a point x, and suppose x + h lies in this neighborhood. Fixing these, we 
apply (1.1.3) to / ( x + th) and get Taylor's formula in the variable t: 

/ (x + ih) = /(x) + I^X + ih) 

+ 

dt 

1 d m / ( x + ih) 

t-
1 d 2 / (x + th) 

2! 

mi dtn 

t=o 

tm + o(tm). 

dt2 r 
t=o 

t=0 

The remainder term is for the case when t —> 0. We underline that this is 
an equality for sufficiently small t. From this, the general Taylor formula 
can be derived. 

To study the problem of minimum of / (x) , we need consider only the 
first two terms of this formula: 

/ ( x + th) = / (x) 
1 d/(x + th) 

1! dt 
t + 

1 d 2 / (x + fh) 

t=o 
t2 +o(t2). 

t=0 2! dt2 

(1.1.6) 
Calculating d/(x + th)/dt as a derivative of a composite function, we have 

d/(x 4- th) 

dt 

9/(x) L a / (x) L df(x) L 

t=0 

Writing dxi 

dx\ 8x2 * ' ' dxn 

thi we can define the first differential 

S/(x) df =
 d4^dxl +

 d4^dx2 + dx\ dx2 

Similarly for the next term we have 

d 2 / ( * + th) 

+ dxn 
LLXJI . 

dt2 

t=o 
E g2/(x) 

' dxidxj 
l j 

hihj. 
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This defines the second differential of / : 

d2f 
32/(x) n 

= y 
t—' dxi dx-j 

(ZiL j (JJJJ j . 

Taylor's formula of the second order can now be written as 

d 2 / ( x /(x + h) = /(x) + lt^i + lt 
OXiOXj 

|hf). 

As with the one-variable case, from (1.1.6) we have the necessary condition 
df = 0 at a point of minimum which, besides, follows from (1.1.5). It also 
follows from (1.1.6) that 

d2f(x + th) 
dt2 > 0 for any sufficiently small ||h|| 

t=o 

suffices for x to minimize / . The corresponding quadratic form in the 
variables hi is 

iC. hn) 

~dxT 

y/(x) 

9 2 / (x) \ 

92/(x) 

% N 

\Kj 

The n x n Hessian matrix is symmetric under our smoothness assumptions 
regarding / . Positive definiteness of the quadratic form can be verified with 
use of Sylvester's criterion. 

The problem of global minimum for a function in many variables on a 
closed domain Q, is more complicated than the corresponding problem for 
a function in one variable. Indeed, the set of points satisfying (1.1.5) can 
be infinite for a function in many variables. Trouble also arises concerning 
the domain boundary dfl: since it is no longer a finite set (unlike {a, b}) 
we must also solve the problem of minimum on d£l, and the structure of 
such a set can be complicated. The algorithm for finding a point of global 
minimum of a function / (x) cannot be described in several phrases; it 
depends on the structure of both the function and the domain. 

To at least avoid the trouble connected with the boundary, we can 
consider the problem of global minimum of a function on an open domain. 
We shall do this same thing in our study of the calculus of variations: 
consider only open domains. Although analogous problems with closed 
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domains arise in applications, the difficulties are so great that no general 
results are applicable to many problems. One must investigate each such 
problem separately. 

When we have constraints 

5 i ( x ) = 0 , i-l,...,m, 

we can reduce the problem of constrained minimization to an unconstrained 
problem provided we can solve the above equations in the form 

%k =ipk(x\,---,xn-m), k = n-m+l,...,n. 

Substitution into / (x ) would yield an ordinary unconstrained minimization 
problem for a function inn — m variables 

J \X\t • ' • i Xn—m, . . . , 1pnyX\, . . . , Xn — mj). 

The resulting system of equations is nonlinear in general. This situation can 
be circumvented by the use of Lagrange multipliers. The method proceeds 
with formation of the Lagrangian function 

771 

£(xi,...,xn,\1,...,\m) = / (x) + y^Xjgj(x), 

by which the constraints gj are adjoined to the function / . Then the Xi and 
\ t are all treated as independent, unconstrained variables. The resulting 
necessary conditions form a system of n + m equations 

dx. + 2 ^ dx. -°> » - l , . . . , n , 

P j ( x ) = 0 , j = l,...,m, 

in the n + m unknowns Xi, Xj. 

Functionals 

The kind of dependence in which one real number corresponds to another 
(or to a finite set) is not enough to describe many natural processes. Ar
eas such as physics and biology spawn formulations not amenable to such 
simple description. Consider the deformations of an airplane in flight. At a 
certain point near an engine say, the deformation is not merely a function 
of the force produced by the engine — it also depends on the other en
gines, air resistance, and passenger positions and movements. (Hence the 
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admonition that everyone remain seated during potentially dangerous parts 
of the flight.) In general, many real processes in a body are described by 
the dependence of the displacement field (e.g., the field of strains, stresses, 
heat, voltage) on other fields (e.g., loads, heat radiation) in the same body. 
Each field is described by one or more functions, so the dependence here 
is that of a function uniquely defined by a set of other functions acting as 
whole objects (arguments). A dependence of this type, provided we specify 
the classes to which all functions belong, is called an operator (or map, or 
sometimes just a "function" again). Problems of finding such dependences 
are usually formulated as boundary or initial-boundary value problems for 
partial differential equations. These and their analysis form the main con
tent of any course in a particular science. Since a full description of any 
process is complex, we often work with simplified models that retain only 
essential features. However, even these can be quite challenging when we 
seek solutions. 

As humans we often try to optimize our actions through an intuitive — 
not mathematical — approach to fuzzily-posed problems on minimization 
or maximization. This is because our nature reflects the laws of nature 
in total. In physics there are quantities, like energy and enthalpy, whose 
values in the state of equilibrium or real motion are minimal or maximal 
in comparison with other "nearby admissible" states. Younger sciences like 
mathematical biology attempt to follow suit: when possible they seek to 
describe system behavior through the states of certain fields of parameters, 
on which functions of energy type attain maxima or minima. The energy 
of a system (e.g., body or set of interacting bodies) is characterized by a 
number which depends on the fields of parameters inside the system. Thus 
the dependence described by quantities of energy type is such that a numer
ical value E is uniquely defined by the distribution of fields of parameters 
characterizing the system. We call this sort of dependence a functional. Of 
course, in mathematics we must also specify the classes to which the above 
fields may belong. The notion of functional generalizes that of function so 
that the minimization problem remains sensible. Hence we come to the 
object of investigation of our main subject: the calculus of variations. In 
actuality we shall consider a somewhat restricted class of functional. (Op
timization of general functional belongs to mathematical programming, a 
younger science that contains the calculus of variations — a subject some 
300 years old — as a special case.) In the calculus of variations we min
imize functional of integral type. A typical problem involves the total 
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energy functional for an elastic membrane under load F = F(x,y): 

E(u) = \*jjs 

Here u = u(x, y) is the deflection of a point (x, y) of the membrane, which 
occupies a domain S and has tension described by parameter a (we can 
put a = 1 without loss of generality). For a membrane with fixed edge, in 
equilibrium E(u) takes its minimal value relative to all other admissible (or 
virtual) states. (An "admissible" function takes appointed boundary values 
and is sufficiently smooth, in this case having first and second continuous 
derivatives in S.) The equilibrium state is described by Poisson's equation 

Au = -F. (1.1.7) 

Let us also supply the boundary condition 

u\ds=cp. (1.1.8) 

The problem of minimum of E(u) over the set of smooth functions satis
fying (1.1.8) is equivalent to the boundary value problem (1.1.7)—(1.1.8). 
Analogous situations arise in electrodynamics, geology, biology, and hy
dromechanics. Eigenfrequency problems can also be formulated within the 
calculus of variations. 

Other interesting problems come from geometry. Consider the following 
isoperimetric problem: 

Of all possible smooth closed curves of unit length in the 
plane, find the equation of that curve L which encloses the 
greatest area. 

With r = r((f>) the polar equation of a curve, we seek to have 

Observe the way in which we have denoted the problem of maximization. 
Every high school student knows the answer, but certainly not the method 
of solution. 

We cannot enumerate all problems solvable by the calculus of varia
tions. It is safe to say only that the relevant functionals possess an integral 
form, and that the integrands depend upon unknown functions and their 
derivatives. 

du\ (du 
dx] \dy 

dxdy — / / Fu dx dy. 
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Minimization of a simple functional using calculus 

Consider a general functional of the form 

F(y)= I f(x,y,y')dx, (1.1.9) 
•la 

where y = y(x) is smooth. (At this stage we do not stop to formulate 
strict conditions on the functions involved; we simply assume they have 
as many continuous derivatives as needed. Nor do we clearly specify the 
neighborhood of a function for which it is a local minimizer of a functional.) 

From the time of Newton's Principia, mathematical physics has for
mulated and considered each problem so that it has a solution which, at 
least under certain conditions, is unique. Although the idea of determin
ism in nature was buried by quantum mechanics, it remained an important 
part of the older subject of the calculus of variations. We know that for a 
membrane we must impose boundary conditions. So let us first understand 
whether the problem of minimum for (1.1.9) is well-posed; i.e., whether (at 
least for simple particular cases) a solution exists and is unique. 

The particular form 

6 

y/l + {y')2 dx 

yields the length of the plane curve y = y(x) from (a,y(a)) to (b,y(b)). 
The obvious minimizer is a straight line y = kx + d. Without boundary 
conditions (i.e., with y(a) or y(b) unspecified), k and d are arbitrary and 
the solution is not unique. We can clearly impose no more than two re
strictions on y(x) at the ends a and b, because y = kx + d has only two 
indefinite constants. However, the problem without boundary conditions is 
also sensible. 

Problem setup is a tough yet important issue in mathematics. We shall 
eventually face the question of how to pose the main problems of the cal
culus of variations in a sensible way. 

Let us consider the problem of minimum of (1.1.9) without additional 
restrictions, and attempt to solve it using calculus. Discretization will re
duce the functional to a function in many variables. In the calculus of 
variations other methods of investigation are customary; however, the cur
rent approach is instructive because it leads to some central results of the 
calculus of variations and shows that certain important ideas are extensions 
of ordinary calculus. 

L 
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We begin by subdividing [a,b] into n partitions each of length h — 
(b — a)/n. Denote Xi = a + ih and yi = y(xi), so y0 = y(a) and yn = y(b). 

Take an approximate value of y'(xi) as (yi+i - yi)/h. Approximating 
(1.1.9) by the Riemann sum 

/.b n—1 

/ f(x,y,y')dxtthY^f(xk,yk,y'{xk)), 
k=0 

we get 

J a 

n - 1 

f(x,y,y') dx'vh'^ f{xk,Vk, {Vk+i - Vk)/h) 
fe=0 

= $(y0,...,yn). (1.1.10) 

Since $(j/o, • • •, 2/n) is an ordinary function in n + 1 independent vari
ables, we set 

= 0 , i = 0,...,n. (1.1.11) 
% 

Again, any function / encountered is assumed to possess all needed deriva
tives. Henceforth we denote partial derivatives using 

Jy dy' Jv'~ dyn }x dx' 

and the total derivative using 

df(x,y(x),y'(x)) 
= fx{x,y(x),y'(x)) 

dx 
+ fy(x,y(x),y'(x))y'(x) 

+ fy'(x,y(x),y'(x))y"(x). 

Observe that in the notation fy' we regard y' as the name of a simple 
variable; we temporarily ignore its relation to y and even its status as a 
function in its own right. 

Consider the structure of (1.1.11). The variable y% appears in the sum 
(1.1.10) only once when i = 0 or i = n, twice otherwise. In the latter case 
(1.1.11) gives, using the chain rule and omitting the factor h, 

fy'(xj-i,yi-i,(yj -yi-i)/h) _ fy>(xi,yi,(yi+i -yi)/h) 

h h 
+ fy(xi,yi,(yi+i -y%)/h) = 0. (1.1.12) 
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For i — 0 the result is 

fy(xo,yo,{yi -Vo)/h) 
fy'(xo,y0,(yi -yo)/h) 

h 

or 

fy'{xo,yo,{yi -yo)/h) -hfy(x0,yo,(yi -yo)/h) = 0. (1.1.13) 

For i = n w e obtain 

fy'{xn-i,yn-i,{yn -yn-i)/h) = 0. (1.1.14) 

In the limit as h —> 0, (1.1.14) gives 

fy>{x,y(x),y'(x))\x=b = 0 

while (1.1.13) gives 

fy>(x,y(x),y'(x))\x==a = 0. 

Finally, considering the first two terms in (1.1.12), 

fy'{xj-i,yi-i,{yi - yi-i)/h) _ fy<{xi,yi,(yi+1 -yi)/h) = 

fv'{xj,yi,{yi+i -Vi)/h) - fy,{xi-i,yi-.i,{yl -yi-{]/h) 
h 

we recognize an approximation for the total derivative —dfy>/dx at yi-\. 
Hence (1.1.12), after h —> 0 in such a way that Xi_i = c, reduces to the 
equation 

fy-Txfy'-Q 

at any i = c £ («,&)• 
In expanded form (1.1.15) is 

fy ~ fy'x - fy'yy' - fy'y'V" = 0, X £ (a, b). 

(1.1.15) 

(1.1.16) 

The limit passage has given us this second-order ordinary differential equa
tion and two point conditions 

fv'\ = ° > 
Jy \x=a ' 

fy'\x= 0. (1.1.17) 

Equations (1.1.15) and (1.1.17) play the same role for the functional (1.1.9) 
as do equations (1.1.5) for a function in many variables. Hence if we impose 
no boundary conditions on y(x), we get necessarily two boundary conditions 
for a function on which (1.1.9) attains a minimum. 
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Since the resulting equation is of second order, we can impose no more 
than two boundary conditions on its solution (see, however, Remark 1.5.1). 
We could, say, fix the ends of the curve y = y(x) by putting 

y(a)=co, y(b)=c1. (1.1.18) 

If we repeat the above process under this restriction we get (1.1.12) and 
correspondingly (1.1.15), whereas (1.1.17) is replaced by (1.1.18). We can 
consider the problem of minimum of this functional on the set of functions 
satisfying (1.1.18). Then the necessary condition which a minimizer should 
satisfy is the boundary value problem consisting of (1.1.15) and (1.1.18). 

We may wonder what happens if we require 

y(a) = 0, y'{a) = 0. 

After all, these are normally posed for a Cauchy problem involving a second-
order differential equation. In the present case, however, a repetition of the 
above steps implies the additional restriction 

A problem for (1.1.15) with three boundary conditions is, in general, in
consistent. 

So we now have some possible forms of the setup for the problem of 
minimum of the functional (1.1.9). 

Brief summary of important terms 

A functional is a correspondence assigning a real number to each function 
in some class of functions. The calculus of variations is concerned with 
variational problems: i.e., those in which we seek the extrema (maxima or 
minima) of functionals. 

An admissible function for a given variational problem is a function that 
satisfies all the constraints of that problem. 

We say that a function is "sufficiently smooth" for a particular develop
ment if all required actions (e.g., differentiation, integration by parts) are 
possible and yield results having the properties needed for that develop
ment. 
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1.2 Euler's Equation for the Simplest Problem 

We begin with the problem of local minimum of the functional 

F(y) = f f(x,y,y')dx (1.2.1) 
J a 

on the set of functions y = y(x) that satisfy the boundary conditions 

y(a)=co, y{b) = CL (1.2.2) 

We now become explicit about this set, since on its properties the very ex
istence of a solution can depend. In the present problem we must compare 
the values of F(y) on all functions y satisfying (1.2.2). In view of (1.1.15) 
it is reasonable to seek minimizers that have continuous first and second 
derivatives on [a,6].4 Next, how do we specify a neighborhood of a func
tion y = y(x)1 Since all admissible functions must satisfy (1.2.2), we can 
consider the set of functions of the form y{x) + <p(x) where 

p(0) = ip{b) = 0. (1.2.3) 

Since we wish to employ tools close to those of classical calculus, we first 
introduce the idea of continuity of a functional with respect to an argument 
which, in turn, is a function on [a, b]. A suitably modified version of the 
classical definition of function continuity is as follows: given any small 
e > 0, there exists a (^-neighborhood of y(x) such that when y(x) + (p(x) 
belongs to this neighborhood we have 

' \F{y + <p) - F{y)\ < e. 

It is seen that if the neighborhood of the zero function is specified by the 
inequality 

max \<p{x)\ + max \<p'(x)\ < 8, (1-2-4) 
x£[a,6] a:6[o,b] 

the definition can become workable when f(x, y, y') is continuous in the 
three independent variables x,y,y'. Of course, this is not the only possible 

4 I t is good to prove statements under minimally restrictive conditions. However, new 
techniques are often developed without worrying too much about the degree of function 
smoothness required at each step: it is okay to suppose whatever degree of smoothness 
is needed and go ahead. When the desired result is obtained, then one can begin to 
consider which hypotheses could be weakened. Such refinement is important but should 
not be attempted at the outset, lest one become overwhelmed by details and never reach 
any valuable results. 
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definition of a neighborhood, and later we shall discuss other possibilities. 
But one benefit is that the left side of (1.2.4) contains the expression usually 
used to define the norm on the set of all functions continuously differentiable 
o n [a,b]: 

\\<p(x)\\= max b (x) | + max: k>'(x)|. (1.2.5) 
x€[a,6J x6[a,6J 

This set, supplied with the norm (1.2.5), is called the normed space 
C^\a,b). Its subspace of functions satisfying (1.2.3) we shall denote by 
C{

0
iy(a,b). The space C^(a,b) is considered in functional analysis; it has 

many important properties, but in the first part of this book we shall need 
nothing further than the convenient notation. We denote by C^ (a, b) the 
set of all functions having k continuous derivatives on [a, b]. 

Thus a ^-neighborhood of y(x) is the set of all functions of the form 
y(x) + (p(x) where <p(x) is such that ip(x) £ CQ (a,b) and ||y(x)|| < S. 

Definition 1.2.1 We say that y(x) is a point of local minimum of F(y) 
on the set of functions satisfying (1.2.2) if there is a ^-neighborhood of 
y(x), i.e., a set of functions z(x) such that z{x) — y(x) € CQ (a, b) and 
\\z(x) — y(x)\\ < 5, in which 

F(z) - F(y) > 0. 

If in a (^-neighborhood we have F(z) — F(y) > 0 for all z(x) ^ y(x), then 
y(x) is a point of strict local minimum. 

It is possible to speak of more than one type of local minimum. Ac
cording to Definition 1.2.1, a function y is a minimum if there is a 5 such 
that 

F(y + ¥>) - F(y) > 0 whenever |M| ca) ( a > 6 ) < S. 

Historically this type of minimum is called "weak" and in what follows we 
will use only this type and refer to it simply as a minimum. But those who 
pioneered the calculus of variations also considered so-called strong local 
minima, defining these as values of y for which there is a 5 such that F(y + 
v) ^ F(y) whenever max|<^| < 5 on [a, b]. Here the modified condition on 
ip permits "strong variations" into consideration: i.e., functions ip for which 
ip' may be large even though <p itself is small. Note that when we "weaken" 
the condition on ip by changing the norm from the norm of C^\a,b) to 
the norm of Co(a,b) which contains only ip and not <p', we simultaneously 
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strengthen the statement we make regarding y when we assert the inequality 
F(y + ip)>F{y). 

Let us now turn to a rigorous justification of (1.1.15). We restrict the 
class of possible integrands f(x, y, z) of (1.2.1) to the set of functions that 
are continuous in (x,y,z) when x £ [a,b] and \y — y(x)\ + \z — y'(x)\ < 8. 
Suppose the existence of a minimizer y(x) for F(y).5 Consider F(y + tip) 
for an arbitrary but fixed ip{x) € CQ (a,b). It is a function in the single 
variable t, taking its minimum at t = 0. If it is differentiable then 

dF{y + tip) 

dt 
= 0. (1.2.6) 

t=o 

In order to justify differentiation under the integral sign, we assume 
f(x,y,y') is continuously differentiable in the variables y and y'. In fact, 
(1.1.16) demonstrates that we shall need the existence of other derivatives 
of / as well. We shall end up assuming that f(x,y,y') is twice continu
ously differentiable, in any combination of its arguments, in the domain of 
interest. 

Let us carry out the derivative in (1.2.6) using the chain rule: 

Q = Jt f(x>y + t<p>y' + t<p')dx 
t=0 

[fv{x,y,y')<p + fy>{x,y,y')<p'] dx. (1-2.7) 

We denote the right member of (1.2.7) by 8F(y,ip) and call it the first 
variation of the functional (1.2.1). Integration by parts applied to the 
second term on the right in (1.2.7) gives 

fy'{x,y,y')ip' dx = -
b d 
<p-^fy'(x,y,y')dx 

where the boundary terms vanish by (1.2.3). It follows that 

J a 
fv(x,y,y')- fa.fv'(x,y,y') ipdx — 0. (1.2.; 

5This can lead to incorrect conclusions, and it is normally necessary to prove the 
existence of an object having needed properties. Perron's paradox illustrates the sort of 
consequences we may reach by supposing the existence of a non-existent object. Suppose 
there exists a greatest positive integer N. Since N2 is also a positive integer we must 
have N2 < N, from which it follows that N = 1. If we knew nothing about the integers 
we might believe this result and attempt to base an entire theory on it. 
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In the integrand we see the left-hand side of (1.1.15). To deduce (1.1.15) 
from (1.2.8) we need the "fundamental lemma" of the calculus of variations. 

Lemma 1.2.1 Let g(x) be continuous on [a,b], and let 

b 

g(x)ip(x)dx = 0 (1.2.9) 

hold for any function <p(x) that is differ•entiable on [a, b] and vanishes in 
some neighborhoods of a and b. Then g(x) = 0. 

Proof. Suppose to the contrary that (1.2.9) holds while g(xo) ^ 0 for 
some XQ G (a, b). Without loss of generality we may assume g(xo) > 0. By 
continuity, g(x) > 0 in a neighborhood [xo — e,xo + e] C (a, b). It is easy 
to construct a nonnegative bell-shaped function ipa{x) such that ipa{x) is 
differentiable, tpo{xa) > 0, and <po(x) = 0 outside (XQ — e,xo + e). See Fig. 
1.1. The product g(x)ipo(x) is nonnegative everywhere and positive near 
XQ. Hence J g(x)<p(x) dx > 0, a contradiction. • 

Zo-e x0 %t-£ x 

Fig. 1.1 Bell-shaped function for the proof of Lemma 1.2.1. 

Note that in Lemma 1.2.1 it is possible to further restrict the class of 
functions <p(x). 

Lemma 1.2.2 Let g(x) be continuous on [a,b], and let (1.2.9) hold for 
any function <p(x) that is infinitely differentiable on [a, b] and vanishes in 
some neighborhoods of a and b. Then g(x) = 0. 

The proof is the same as that for Lemma 1.2.1: it is necessary to con
struct the same bell-shaped function <p(x) that is infinitely differentiable. 
This form of the fundamental lemma provides a basis for the so-called the
ory of generalized functions or distributions. These are linear functionals 

/ 
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on the sets of infinitely differentiable functions, and arise as elements of the 
Sobolev spaces to be discussed later. 

Now we can formulate the main result of this section. 

Theorem 1.2.1 Suppose y = y(x) € C^2\a,b) locally minimizes the 
functional (1.2.1) on the subset of C^(a,b) consisting of those functions 
satisfying (1.2.2). Then y(x) is a solution of the equation 

fy ~ ~fy- = 0- (1.2-10) 

Proof. Under the assumptions of this section (including that f(x,y,y') 
is twice continuously differentiable in its arguments), the bracketed term in 
(1.2.8) is continuous on [a,b]. Since (1.2.8) holds for any ip(x) € CQ (a, 6), 
Lemma 1.2.1 applies. • 

Definition 1.2.2 Equation (1.2.10) is known as the Euler equation, and a 
solution y = y(x) is called an extremal of (1.2.1). A functional is stationary 
if its first variation vanishes. 

Observe that (1.2.10) and (1.2.2) taken together constitute a boundary 
value problem for the unknown y(x). 

Example 1.2.1 Find a function y = y(x) that minimizes the functional 

F(y)= [\y2 + (y')2-2y}dx 
Jo 

subject to the conditions y(0) = 1 and y(l) = 0. 

Solution Here f(x, y, y') = y2 + (y')2 — 2y, so we obtain 

fy=2y- 2, /„, = 2y', 

and the Euler equation is 

y" - y + 1 = 0. 

Subject to the given boundary conditions, the solution is 

y(x) = 1 -
- P . - i 

We stress that this is an extremal: only supplementary investigation can 
determine whether it is an actual minimizer of F(y). Consider the difference 
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F(y + <p) — F(y) where (f(x) vanishes at x = 0,1. It is easily shown that 

F(y + <p)- F(y) = [ [<p2 + (if')2} dx > 0, 
Jo 

so y(x) really is a global minimum of F{y). 

We should point out that such direct verification is not always straight
forward. However, a large class of important problems in mechanics (e.g., 
problems of equilibrium for linearly elastic structures under conservative 
loads) can be solved by minimizing a total energy functional. In such cases 
we will always encounter a single extremal that minimizes the total energy. 
This happens because of the quadratic structure of the functional, just as 
in the present example. 

Certain forms of / can lead to simplification of the Euler equation. The 
reader can easily show the following: 

(1) If / does not depend explicitly on y, then fy> = constant. 
(2) If / does not depend explicitly on x, then / - fy>y' = constant. 
(3) If / depends explicitly on y' only and fyiyi ^ 0, then y(x) = C\x + C2. 

1.3 Some Properties of Extremals of the Simplest Func
tional 

In our attempt to seek a minimizer on a subset of C^(a,b), we imposed 
the illogical restriction (/ does not depend on y"\) that it must belong to 
C^(a, b). Let us consider how to circumvent this requirement. 

Lemma 1.3.1 Let g{x) be a continuous function on [a,b] for which the 
equality 

b 

g(x)<p'(x)dx = 0 (1.3.1) 

holds for any ip{x) £ CQ (a,b). Then g(x) is constant. 

Proof. For a constant c it is evident that / ap'{x) dx = 0 for any (p(x) G 
CQ (a,b). So g(x) can be an arbitrary constant. We show that there are 
no other forms for g. From (1.3.1) it follows that 

6 

\g(x)-c]<p'(x)dx = 0. (1.3.2) 

/ 
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Take c = CQ = (b — a)"1 J g(x) dx. The function <p(x) = f*[g(s) — c0] ds 
is continuously differentiable and satisfies <p(a) = tp(b) = 0. Hence we can 
put it into (1.3.2) and obtain 

/ [g{x)-c0] 
J a 

2 dx = 0, 

from which g(x) = c. D 

We now use Lemma 1.3.1 to establish a necessary condition for a relative 
minimum. 

Theorem 1.3.1 Suppose that y = y(x) £ C^\a,b) locally minimizes 
(1.2.1) on the subset of functions in C^\a,b) satisfying (1.2.2). Then y(x) 
is a solution of the equation 

lo 

with a constant c 

/ fy(s,y(s),y'(s))ds-fy>{x,y(x),y'(x))=c (1.3.3) 
Jo 

Proof. Let us return to the equality (1.2.7), 

[fy(x, y, y')<p + fy>{x, y,y')ip'] dx = 0, 

which is valid here as well. Integration by parts gives 

fb i>b rx ru i>0 px 

j fv(x,y(x),y'{x))<p{x)dx = - / fy(s,y(s),y'(s))ds<p'(x)dx. 
Ja Ja Ja 

The boundary terms were zero again because of (1.2.3). It follows that 

/ - / fy(s,y(s),y'(s))ds +fy,(x,y(x),y'(x)) ip'(x)dx = 0. 

Ja L Ja 
This holds for all <p(x) G C{

Q
1]{a,b). So by Lemma 1.3.1 we have (1.3.3). • 

The integro-differential equation (1.3.3) has been called the "Euler equa
tion in integrated form." 

Corollary 1.3.1 If 

fy,y,(x,y(x),y'(x)) ^ 0 

along a minimizer y — y(x) £ C^\a,b) of (1.2.1), then y(x) G C^2\a, b). 
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Proof. Rewrite (1.3.3) as 

fy'(x,y(x),y'(x)) = / fy(s,y(s),y'(s))ds-c. 
Jo 

The function on the right is continuously differentiable for any y = y(x) G 
C^(a,b). Thus we can differentiate both sides of the last identity with 
respect to x and obtain 

fy'x + fy'yV' + fy'y'lj" = & continuous function. 

Considering the term with y"(x) on the left, we prove the claim. • 

It follows that under the condition of the corollary equations (1.2.10) and 
(1.3.3) are equivalent; however, this is not the case when fy<yi(x, y(x), y'(x)) 
can be equal to zero on a minimizer y = y(x). Since y"(x) does not appear 
in (1.3.3), it can be considered as defining a generalized solution of (1.2.10). 

At times it becomes clear that we should change variables and consider a 
problem in another coordinate frame. For example, if we consider geodesic 
lines on a surface of revolution, then cylindrical coordinates may seem more 
appropriate than Cartesian coordinates. For the problem of minimum of a 
functional we have two objects: the functional itself, and the Euler equation 
for this functional. Let y = y{x) satisfy the Euler equation in the original 
frame. Let us change variables, for example from (x,y) to (u,v): 

x = x(u,v), y = y(u,v). 

The forms of the functional and its Euler equation both change. Next we 
change variables for the extremal y = y{x) and get a curve v = v(u) in the 
new variables. Is v = v(u) an extremal for the transformed functional? It 
is, provided the transformation does not degenerate in some neighborhood 
of the curve y = y{x): that is, if the Jacobian 

J 
Vu yv 

7^0 

there. This property is called the invariance of the Euler equation. Roughly 
speaking, we can change all the variables of the problem at any stage of 
the solution and get the same solutions in the original coordinates. This 
invariance is frequently used in practice. We shall not stop to consider the 
issue of invariance for each type of functional we treat, but the results are 
roughly the same. 
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We have derived a necessary condition for a function to be a point of 
minimum or maximum of (1.2.1). In what follows we show how this is 
done for many other functionals. The solution of an Euler equation is the 
starting point for any variational investigation of a physical problem, and 
in practice this solution is often undertaken numerically. Let us consider 
some methods of doing this for (1.2.1). 

1.4 Ritz's Method 

We now consider a numerical approach to minimizing the functional (1.2.1) 
with boundary conditions (1.2.2). Corresponding techniques for other prob
lems will be presented later; we shall benefit from a consideration of this 
simple problem, however, since the main ideas will be the same. 

In § 1.1 we obtained the Euler equation for (1.2.1). The intermediate 
equations (1.1.12) with boundary conditions (1.1.13)—(1.1.14), which for 
this case must be replaced by the Dirichlet conditions 

y(a) = yo = d0, y(b) = yn = d1, 

present us with a finite difference variational method for solving the prob
lem (1.2.10), (1.2.2), belonging to a class of numerical methods based on 
the idea of representing the derivatives of y(x) in finite-difference form and 
the functional as a finite sum. These methods differ in how the functions 
and integrals are discretized. Despite widespread application of the finite 
element and boundary element methods for the numerical solution of in
dustrial problems, the finite-difference variational methods remain useful 
because of certain advantages they possess. 

Other methods for minimizing a functional, and hence of solving certain 
boundary value problems, fall under the general heading of Ritz's method. 
Included here are the modifications of the finite element method. Ritz's 
method was popular before the advent of the computer, and remains so 
today, because it can yield accurate results for complex problems that are 
difficult to solve analytically. 

The idea of Ritz's method is to reduce the problem of minimizing (1.2.1) 
on the space of all continuously differentiable functions satisfying (1.2.2) 
to the problem of minimizing the same functional on a finite dimensional 
subspace of functions that can approximate the solution. Formerly, the 
necessity of doing manual calculations forced engineers to choose such sub-
spaces quite carefully, since it was important to get accurate results in as 
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few calculations as possible. The choice of subspace remains an important 
issue today, because an inappropriate choice can lead to computational 
instability. 

In Ritz's method we seek a solution to the problem of minimization of 
the functional (1.2.1), with boundary conditions (1.2.2), in the form 

n 

yn(x) =ip0(x) + ^cfc<£fc(x). (1-4.1) 
fc=i 

Here <po(x) satisfies (1.2.2); a common choice is the linear function <po(x) = 
ax + (3 with 

di — d0 n bd0 — ad\ 
a = — , P=—T • 

b — a 6 — a 
The remaining functions, called basis functions, satisfy the homogeneous 
conditions 

<pk(a) =<pk(b) = 0 , fc = l , . . . , n . 

The Ck are constants. The function y^{x) that minimizes (1.2.1) on the 
set of all functions of the form (1.4.1) is called the nth approximation of 
the solution by Ritz's method. It satisfies the boundary conditions (1.2.2) 
automatically. The above mentioned subspace is the space of functions of 
the form ]Cfc=o ck<Pk{x)- For a numerical solution it is necessary that the 
functions f\(x),... ,(fn(x) be linearly independent, which means that 

E Ck<Pk{x) = 0 only if c/j = 0 for k = 1 , . . . , n. 

In the days of manual calculation this was supplemented by the requirement 
that a small value of n — say n = 1, 2, or 3 at most — would suffice. This 
requirement could be met since the corresponding boundary value problems 
described real objects, such as bent beams, whose shapes under load were 
understood. Now, to provide a theoretical justification of the method, we 
require that the system {v?/c(£)}fcLi be complete. This means that given 
any y = g(x) G CQ '(a,b) and e > 0 we can find a finite sum XX=i cfct/:'fc(^) 
such that 

9(x) -^2ck<pk{x) 
fc=i 

< £. 
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(Here the norm is denned by (1.2.5).) It is sometimes required that 
{lPk(x)}'k'=i be a basis of the corresponding space, but this is not needed 
for either the justification of the method or its numerical realization. 

We have therefore come to the problem of minimum of the functional 

6 

f(x,yn,y'n)dx 

where yn(x) is given by (1.4.1). The unknowns are the Ck, so the functional 
becomes a function 

$ ( c i , c 2 , . . . , c n ) = / f{x,yn,y'n)dx 
Jo 

in n real variables. To minimize this we solve the Ritz system of equations 
of nth approximation: 

^ ( c 1 ; c 2 , . . . , c n ) = fc = 1 . ( L 4 . 2 ) 

dck 

Denoting CQ = 1, we have 

d$(c1,c2,...,cn) _ d rh 

dck dck 

_ _d_ 

dck 

/ f{x,yn,y'n)dx 
J a 

r-b / n n \ 

/ f x^YlCiipi<^)'YlCiip'i^ dx 
Ja \ i=0 i=0 / 

/

b / n n \ 

fy \xi'^2ciiPi(x)>'52cilPi(x) Vk(x)dx 
\ i=0 i=0 / 

rb ( n n \ 
+ fy' X^CitpiWi^Ciip'iix) tp'k{x)dx, 

Ja \ i=0 i=0 / 

hence (1.4.2) becomes 

/
b I n n \ 

V i=o i=o / 
rb / n n \ 

/ / j / ' ^. 5 Z ^ V ^ ^ ) ' 5Z CiViC )̂ V'k{x)dx = 0 (1.4.3) 
Ja \ i=o i=o / 

+ 

for fc = 1 , . . . ,n. This is a system of n simultaneous equations in the n 
variables c±, C2,..., c„. It is linear only if / is a quadratic form in c^; i.e., 
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only if the Euler equation is linear in y(x). For methods of solving simul
taneous equations, the reader is referred to specialized books on numerical 
analysis. 

We note that (1.4.3) can be obtained in other ways. We could simply 
put y — yn and ip = ipk in (1-2.7), since during the derivation of (1.4.3) 
we used the same steps we used in deriving (1.2.7). Alternatively, we could 
put yn into the left-hand side of the Euler equation, 

fy(x,yn,y'n) ~ -^;fy>(x,yn,y'n), (1-4-4) 

and then require it to be "orthogonal" to each of the <pi,... ,ipn. That is, we 
could multiply (1-4.4) by <pk, integrate the result over [a, b], use integration 
by parts on the term with the total derivative d/dx, and equate the result 
to zero. This is opposite the way we derived (1.4.3). This method of ap
proximating the solution of the boundary value problem (1.2.10), (1.4.1) is 
called Galerkin's method. In the Russian literature it is called the Bubnov-
Galerkin method, because in 1915 I.G. Bubnov, who was reviewing a paper 
by S.P. Timoshenko on applications of Ritz's method to the solution of a 
problem for a bending beam, offered a brief remark on another method 
of obtaining the equations of Ritz's method. The journal in which Timo-
shenko's paper appeared happened to publish the comments of reviewers 
together with the papers (a nice way to hold reviewers responsible for their 
comments!). In this way Bubnov became an originator of the method. 
Galerkin was Bubnov's successor, and his real achievement was the devel
opment of various forms and applications of the method. In particular, 
there is a modification of this method wherein (1-4.4) is multiplied not by 
<fk, the functions from the representation of yn, but by other functions 
ipi,... ,tjjn. This is sometimes a better way to minimize the "residual" 
(1.4.4). 

We note that the most popular systems of basis functions {<fk} for use in 
Ritz's method for 1-D problems are trigonometric polynomials, or systems 
of the type {(x — a)(x — b)Pk(x)} where the Pk{x) polynomials. Here the 
factors (x — a) and (x — b) enforce the required homogeneous boundary 
conditions at x = a, b. 

When deriving the equations of the Ritz (or Bubnov-Galerkin) method, 
we imposed no special conditions on {<Pk} other than linear independence 
and some smoothness, that is <pk(x) S CQ (a,b). It is seen that in general 
each of the equations (1.4.3) contains all of the Cfc. By the integral nature 
of (1.4.3), we see that if we select basis functions so that each fk{x) is 
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nonzero only on some small part of [a, b], we get a system in which each 
equation involves only a subset of {tpi}- This is the background for the finite 
element method based on Galerkin's method: depending on the problem 
each equation involves just a few of the c^ (three to five, usually). Moreover, 
the derivation of the equations of Galerkin's method leads to the idea that 
it is not necessary to have basis functions with continuous derivatives — 
it is enough to take the functions with piecewise continuous derivatives of 
higher order (first order for the problem under consideration) when it is 
possible to calculate the terms of (1.4.3). 

Ritz's method is convenient because it can use low-order approximations 
to obtain very good results. A disadvantage is that the calculations at a 
given step are almost independent from those of the previous step. The Ck 
do not change continuously from step to step; hence, although the next step 
brings a better approximation, the coefficients can change substantially. 
Because of accumulated errors there are some limits on the number of basis 
functions in practical calculations. 

Example 1.4.1 Consider the problem 

*(j/) = / {y'2(x)+ [1 + 0.1 sm(x)]y2(x)-2xy(x)}dx-* min 
Jo 

subject to the boundary conditions y(0) = 0, y(l) = 10. Find the Ritz 
approximations for n = 1,3,5 using <po(x) = lCte and each of the following 
sets of basis functions: 

(a) <fk(x) = (1 -x)xk, k>l, 
(b) ifk(x) = smkirx, k > 1. 

Solution Note that <po(x) was chosen to satisfy the given boundary con
ditions. We must now find the expansion coefficients c^ by solving the 
simultaneous equations 

~^>((po(x) + Y^Ciipi{x)\=0, i = l,...,n. 

For brevity let us denote 

(y, z)= {y'{x)z'{x) + [1 + 0.1 sm{x)]y(x)z(x)} dx 
Jo 
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so that 

*(y) = (y,y) ~ 2 / xy{x)dx. 

Jo 

Using the symmetry of the form (y, z) we write out Ritz's equations: 

Cl((pi,fl) +C2((f2,(fl) + 

Cl(<Pl,<P2) +C2(<fi2,V2) + 

Cl{ipi,<fn) +C2(<P2,<Pn) + 

(1.4.5) 

For small n this system can be solved by hand, but for large n a computer 
solution becomes necessary. In the present case we find that for the first 
set of basis functions the Ritz approximations are 

yi(a:) = 10a; - 2.162x(l - x), 

y3{x) = 10a; + (-1.409a; - 1.356a;2 - 0.246a;3)(l - x), 

y5(x) = 10a; + (-1.404a; - 1.404a:2 - 0.140a;3 - 0.063a;4 - 0.007a;5)(l - x). 

For the second set of basis functions we obtain the Ritz approximations 

zx(x) = 10a; - 0.289sin-KX, 

z3{x) = 10a; -0 .289 sinirx + 0.063 sin27ra; - 0.017sin3?ra;, 

z5(x) = l O x - 0.289 sin7ra + 0.063 sin2?ra; - 0.017sin37ra; 

+ 0.008 sin4?ra; - 0.004 sin5?ra;, 

as required. 

In this example we introduced the bilinear form (y,z). The symmetry 
of this form with respect to its arguments simplified some of the required 
calculations. In the static problems of linear elasticity, such a form is nat
urally induced by the energy expression for an elastic body. Moreover, the 
form of the left-hand sides of (1.4.5) is the same for all such problems, 
whether they are 3-D problems of elasticity, or problems describing elastic 
beams or shells. 

+ Cn(<Pn,fl) = ~(<P0,<fl) + / X<fii(x)dx, 
Jo 

+ Cn{(pn,ip2) = -(</?o,</>2> + / X(p2(x)dx, 
Jo 

+ Cn{ifn,(pn) = ~{ipo,<pn}+ / Xipn(x)dx. 
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In Ritz's time such approximate solutions were sought for problems de
scribing elastic beams and plates. The resulting systems of equations were 
fairly hard to solve by hand. The method was justified by comparison 
with experimental data. A full justification of Ritz's and similar methods 
requires the tools of functional analysis, which forms the subject of Chap
ter 3. However, we would like to discuss some aspects of the method on an 
elementary level using, in particular, Example 1.4.1 as a model. 

Notes on basis functions 

First let us comment on the approximations. Our working viewpoint is that 
normally taken in practice: we compare each pair of successive approxima
tions and terminate our calculation process when we reach a pair whose 
difference is less than some predetermined tolerance e. 

For each type of approximation, if we appoint e = 0.01 then we can stop 
at k = 5. Calculation out to k = 10 shows that the k = 5 approximations 
are both very good. However, they do differ from each other by a maximum 
of about 0.25. So which is "more" correct? We can answer this by substitu
tion into the functional, which gives *(y5) ss 127.046 and *(z5) « 127.449. 
This is evidence that polynomial approximation is preferable. It is not hard 
to see why: the true solution is not oscillatory, so the oscillatory behavior 
of the trigonometric polynomials is not helpful in this case. So our "practi
cal" approach to terminating the numerical process may not work well for 
trigonometric approximation. In this particular example it can be shown 
that the trigonometric approximations do converge, but slowly. 

We have selected the polynomial-type Ritz approximations. But our 
observation regarding trigonometric approximations is cause for concern 
since the situation with ordinary polynomials should not differ in principle 
from that with trigonometric polynomials. So we would like to further 
discuss the problem of basis functions. 

In the formulation of Ritz's method we required completeness of the set 
of basis functions. Let us verify this notion. Weierstrass's theorem of calcu
lus states that any function f(x) continuous on [0,1] can be approximated 
uniformly by a polynomial to within any accuracy. In other words, given 
e > 0 we can find an nth order polynomial Pn(x) such that 

max \f(x) - Pn(x)\ <e. 
xe[o,i] 

It follows that to within any accuracy we may use a polynomial to uniformly 
approximate a function f(x) together with its continuous derivative. In-
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deed, given e > 0, we begin with approximation of the derivative f'(x) by 
a polynomial Qn{x): 

max \f'(x) -Qn(x)\ < e/2. 
xe[o,i] 

The polynomial 

approximates f(x): 

Pn(x) = f(0) + I Qn(t) 
JO 

dt 

\f(x)-Pn(x)\ = 

< 

/(o)+ r f(t)dt-f(o)- r Qn{t)dt 
Jo Jo 

[X\f(t)-Qn(t)\dt 
Jo 

< e / 2 for x € [0,1]. 

In the same way it can be shown that a function n-times continuously dif-
ferentiable on [0,1] can be approximated to within any prescribed accuracy 
by a polynomial together with all n of its derivatives on [0,1], Thus the set 
of monomials {xk} constitutes a complete system of functions in C7^n'[0,1] 
for any n. 

Note that Weierstrass' theorem guarantees nothing more than the exis
tence of an approximating polynomial. When we decrease e we get a new 
polynomial where the coefficient standing at each term xk may differ sig
nificantly from the corresponding coefficient of the previous approximating 
polynomial. This is because the set {xk} does not possess the property of 
uniqueness required of a true basis. Moreover, in mathematical analysis it is 
shown that we can arbitrarily remove infinitely-many members of the fam
ily {xk} and still have a complete system {xkr}. For this it is necessary only 
to retain such members of the family that the series X ^ i V^r diverges. 
So the system {xk} contains more members than we need. Although any 
finite set of monomials xk is linearly independent, as we take more and 
more elements the set gets closer to becoming linearly dependent; that is, 
given any s > 0 we can find infinitely-many polynomials approximating the 
zero function to within e-accuracy on [0,1]. This leads to instability in nu
merical calculation. The difficulty can be avoided by using other families of 
polynomials for approximation: namely, orthogonal polynomials for which 
numerical instability shows itself only in higher degrees of approximation. 
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As we know from the theory of Fourier expansion, the second system of 
basis functions {smkirx} has the so-called orthonormality property. It is, 
moreover, a basis as we shall discuss later. This provides greater stability 
in calculations to within higher accuracy. However, in low-order Ritz ap
proximations it can be worse than a polynomial approximation of the same 
problem, at least for many problems whose solutions do not oscillate. 

There is one additional aspect of the approximation that is seen from the 
above results. For Ritz's approximations we compared their values. Com
paring the values of their derivatives we see that much better agreement is 
obtained for the values of the approximating functions than for their deriva
tives. It is obvious that the same holds for the difference between an exact 
solution and the approximating functions. This property is common to all 
projection methods. So, for example, in solving problems of elasticity we 
get comparatively good results in low-order approximations for the field of 
displacements, whereas the fields of stresses, which are expressed through 
the derivatives of the displacement fields, are approximated significantly 
worse. 

1.5 Natural Boundary Conditions 

In § 1.1 we found that by using discretization on the problem of minimum 
of the functional (1-2.1) without boundary conditions (or "with free bound
ary" as we sometimes say) we obtain the Euler equation and some boundary 
conditions. We shall demonstrate that the same boundary conditions ap
pear by the method of § 1.2. They are known as natural conditions. 

We consider the minimization of (1.2.1) when there are no restrictions 
on the boundary for y = y(x). 

Theorem 1.5.1 Let y = y(x) e C^{a,b) be a minimizer of the func
tional J f(x,y,y')dx over the space C^(a,b). Then for y = y(x) the 
Euler equation 

fy ~ J-fv' = ° for al1 x e (a> b) (1.5.1) 

holds along with the natural boundary conditions 

fy'\ = 0 . fy'\ fc = 0. 
J y \x=a ' J y \x—b 

Proof. We can repeat the initial steps of § 1.2. Namely, consider the 
values of the functional on the bundle of functions y = y(x) + tip(x) where 
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<p(x) £ C^\a, b) is arbitrary but fixed. Here, however, there are no restric
tions on (p(x) at the endpoints of [a, b]. 

For fixed y(x) and <p(x) the functional J f(x,y + t<p,y' + tip') dx be
comes a function of the real variable t, and attains its minimum at t = 0. 
Differentiating with respect to t we get 

[fy(x, y,y')<P + fy>{x, y,y')<p'] dx = 0. 

After an integration by parts we have 

J a 
fy(x,y,y')~ -fafy'(x>y>y') <pdx + fy<(x, y(x), y'{x))(p(x) 0. 

(1.5.2) 
From this we shall derive the Euler equation for y{x) and the natural 

boundary conditions. The procedure is as follows. Let us limit the set 
of all continuously differentiable functions <p(x) to those which satisfy the 
condition </?(a) = <p(b) = 0. For these functions we have 

I 
J a 

d 
fv(x,y,y')- •j~fy'(x,y,y') 

dx' 
<pdx — 0. (1.5.3) 

This equation holds for all functions ip(x) that participate in the formula
tion of Lemma 1.2.1. Therefore the continuous multiplier of <p(x) in the 
integrand of (1.5.3) is zero. So the Euler equation (1.5.1) holds in (a, b). 

Now let us return to (1.5.2). The equality (1.5.3), because of the Euler 
equation, holds for all y>(x). From (1.5.2) it follows that 

fy,(x,y(x),y'(x))ip{x) 0 

for any ip(x). Taking cp(x) = x — b we find that fyi\x=a 

<p(x) = x — a we find that fyi \x=b = 0. 

(1.5.4) 

0; taking 
D 

We would like to call attention to the way we obtained this result. First 
we restricted the set of all admissible functions to those for which we could 
get a certain intermediate result (the Euler equation); because of this re
sult, we obtained some simplification in the first variation of the functional; 
finally, considering the simplified first variation on all the admissible func
tions, we obtained the rest of the results. 

Natural boundary conditions are of great importance in mathematical 
physics. For some models of real bodies or processes it may be unclear which 
(and how many) boundary conditions are necessary for well-posedness of 
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the problem. The variational approach usually clarifies the situation and 
provides natural boundary conditions dictated by the nature of the problem. 
The bending of a plate is a famous example. For her pioneering studies of 
this problem Sophie Germain received a prize from the French Academy 
of Sciences. She derived the biharmonic equation for the deflections of the 
midsurface of the plate, but with three boundary conditions as seemed to 
be in accordance with mechanical intuition; variational considerations later 
demonstrated that only two of these were independent. 

Remark 1.5.1 In § 1.1 we discussed the question of which boundary 
conditions can be imposed to get a well-posed boundary value problem for 
minimizing the functional (1.2.1). General considerations are nice; however, 
consider the minimization of 

[ (y,2 + 2y)dx (1.5.5) 
Jo 

on the set of continuously differentiable functions. Its Euler equation is 
y" — 1, thus all the extremals take the form y = \x2 + kx + b. The natural 
boundary conditions are y'(0) = 0, y'(l) = 0. These imply k = 0. So the 
problem of minimum of (1.5.5) (with natural boundary conditions) has a 
family of solutions y = \x2 + b with arbitrary constant b. Thus we may 
impose an additional condition, say y(0) = 2. But in general, such a third 
condition for an ordinary differential equation of second order can yield a 
boundary value problem that has no solution. 

The apparent simplicity of (1.5.5) should not cause the reader to sup
pose that it represents an unimportant special case, too "degenerate" to be 
practical: the same situation is to be found with the whole class of function-
als that describe the equilibrium states of linear elastic systems in terms of 
displacements. If we impose no geometrical restrictions on the position of 
an elastic body (it is normally the case of natural boundary conditions) we 
can always change the coordinate frame, and all the displacements can be 
changed in such a way that the body appears to be shifted as a whole (i.e., 
to move as a "rigid body"). Depending on the model of the body there are 
apparently one to six free constants describing such a motion — this means 
that we can impose additional boundary conditions at some points and still 
preserve the well-posedness of the problem. In a 1-D problem (where the 
dimension is a spatial coordinate) the situation is exactly as it is for (1.5.5): 
it is possible to impose an additional boundary condition when considering 
the problem with "free" ends. Indeed, it is often necessary to be quite 
careful when applying the outcomes of very general considerations. 
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1.6 Some Extensions to More General Punctionals 

Let us consider two extensions of the above results. 

The functional J f(x, y, y ' ) dx 

Let us replace y(x) in (1.2.1) by a vector function 

y(x) = (yi(x),y2{x),...,yn{x)). 

We shall denote the integrand of the functional as 

f(x, y(x),y'{x)) or fix, yi{x),y2(x),..., yn(x), y[(x),y'2{x),..., y'n{x)) 

interchangeably. So our task is to treat functionals of the form 

F(y)= f f(x,y,y')dx. (1.6.1) 
J a 

Let us first consider the problem of minimizing (1.6.1) when y(x) takes 
boundary values 

y ( a ) = c o , y(ft )=ci , (1.6.2) 

with vector constants c0 = (c0i ,c02,.. • , c0„), ci = (cn,ci2, • • • ,c\n). 
We shall retain the scalar-type notation C^k\a,b) for a vector func

tion. Hence y(x) G C^k\a,b) means that each coordinate function y%{x) S 
C(k\a,b); that is, each yi{x) possesses all derivatives up to order k and 
these are all continuous on [a, b}. We impose the norm 

n 

\\y(x)\\cW(a,b) = Yl Wyi(X)WcW{a,b) 
i=l 

on C(k\a,b), and can thereby define e-neighborhoods as needed to de
scribe minimizers of the functional (1.6.1). So we seek a minimizer y(x) of 
(1.6.1) from among all vector functions belonging to C^\a, b) and satisfy
ing (1.6.2). 

Theorem 1.6.1 Suppose y(x) £ C^ia, b) locally minimizes the func
tional J fix,y,y')dx on the subset of vector functions ofC^\a,b) satis
fying (1.6.2). Then y(x) is a solution of the equation 

V y / - ^ V y , / = 0. (1.6.3) 



34 Calculus of Variations and Functional Analysis 

Here we use the gradient notation 

d d d \ „ f d 8 d 
V y ~ U / i ' 0 i / 2 ' " " 0 W ' V y ' \dy'i'dy,2"",dy'n 

The vector equation (1.6.3) can be written as n scalar equations 

fyi~~ahfy'=0' i = 1'-"'n' ^L6-4) 
each having the form of the Euler equation. 

Proof. We begin with the same construction of admissible functions, 
y(x) + tcp(x) where <p(a) = ip(b) = 0, on which we consider (1.6.1): 

F(y(x) + tip{x)) = f f(x, y + tip, y' + Up') dx. (1.6.5) 
Jo 

For fixed y(a;) and f{x) this becomes a function of the real variable t, and 
takes its minimum at t = 0 for any <p>{x). Take ip(x) of the special form 
(p1(x) = (ip(x),0,... ,0) where the only nonzero component stands in the 
first position. Then (1.6.5) becomes 

F(y{x)+t<p1(x))= / f{x,yi(x)+t<p{x),y2(x),...,yn(x), 
J a 

y[(x) + Up'(x), y'2(x),..., y'n(x)) dx. (1.6.6) 

Now the function of t becomes a particular case of the function of § 1.2, 
F(y(x) + tip(x)), with the evident notational change y i—> y\. Thus a con
sequence of the minimum of (1.6.6) at t = 0 is the corresponding Euler 
equation 

A 
dx" 

This is the first equation of (1.6.4). Similarly, the ith equation of (1.6.4) 
is derived by taking (p(x) in the form fi(x) = ( 0 , . . . , <pi(x),..., 0), where 
the only nonzero component stands in the ith position. • 

We would like to derive the natural boundary conditions for (1.6.1). 
Now we should not impose any conditions for y at points x = a and 
x = b in advance, and thus it is the same for tp at these points. For a 
moment consider all components of the minimizer y(x) other than yi(x) 
to be given. Then (1.6.1) can be formally considered as a particular 
case of (1.2.1) with respect to the ordinary function y — yi(x). Now 
admissible vector functions differ from y(x) only in the ith component: 

fvi AJV'-L ~ 0-
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tp(x) = ipi(x) = ( 0 , . . . , (p(x),..., 0). We can repeat the reasoning of § 1.3. 
Thus considering the problem of minimum of (1.6.1) without boundary 
restrictions, we get n pairs of boundary conditions: 

/wiL=a = 0 ' /wlL=6 = 0 ' » = l , . . . , n . 

These are natural boundary conditions for a minimizer. 

The functional J f(x, y, y',..., j/™)) dx 

Having obtained the Euler equation for (1.2.1), we now examine the prob
lem of minimum for the functional 

, b 

K(y)= / f(x,y,y',...,y^)dx. (1.6.7) 
•J a 

We may consider this on the set of functions satisfying certain boundary 
conditions; alternatively we may impose no boundary conditions, and ob
tain natural conditions as a result. 

Let us consider first the problem with given boundary equations. The 
corresponding Euler equation will have order 2n, hence we take n conditions 
at each endpoint: 

y(a) = CQ, y(b) = c*0*, 

y'(a) = cl, y'(b) = cl*, 

2/ ( - 1 ) (a) = c;_1 , y{n-l\b)=cnU- (1-6.8) 

We suppose that the integrand is sufficiently smooth for our purposes. 
Specifically, f(x, y, y',..., j/(")) belongs to C^ on the domain of all of its 
variables, at least in some neighborhood of a minimizer. 

Theorem 1.6.2 Suppose y(x) G C^-2n\a, b) locally minimizes Fn(y) of 
(1.6.7) on the subset of vector functions of C^(a,b) satisfying (1.6.8). 
Then y(x) satisfies 

A-E'* + E*---+<- 1> , '£' . ' - ' - 0- <1M» 
This is known as the Euler-Lagrange equation. 

Proof. We begin the proof with a reminder of what it means for y(x) 
to be a local minimizer of Fn(y). We consider the bundle of functions 
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y(x) + <p(x) where ip(x) is arbitrary and belongs to C(n\a, b). Because the 
bundle must satisfy (1.6.8) for any ip{x), we see that ip(x) must satisfy the 
homogeneous conditions 

<p(a) 

if/{a) 

0, 

0, 

<p(b) = 0, 

tp'{b) = 0, 

<p<n-1Xa)=0, V 
(n-l) (6) = 0. (1.6.10) 

Let CQ (a,b) denote the subspace of C^n\a,b) consisting of functions 
<p(x) which satisfy (1.6.10). A function y(x) e C{n)(a,b) satisfying (1.6.8) 
is called a local minimizer of Fn(y) if Fn(y + <p) > Fn(y) for any (f(x) G 

CQ (a,b) and such that ||</;,|lc<'i)(a 6) < e ^or s o r n e £ > 0-
As usual we introduce the parameter t and consider the values of Fn (y) 

on the bundle y(x)+tip(x). Considering Fn(y(x)+t<p(x)) for a momentarily 
fixed <p(x) as a function of t, we see that it takes its minimal value at t = 0 
and thus dFn(y(x) + tip(x))/dt = 0 at t = 0. Let us write this out in detail: 

dFn(y{x)+t<p{x)) 

dt t=o 

= Jtj /(X'V + tlp'V' + ttp'>V" + tlfi"'' • •'y{n) + tipin)) dX 

= J (/„¥> + fvH>' + fv>«p" + ••• + /„(~)V(n)) dx 

t=o 

(1.6.11) 

(in the last line of the formula the arguments are / = f(x, y, y',..., j/™')). 
Now we must implement traditional (multiple) integration by parts in each 
term containing derivatives of (p in such a way that on the last step the 
integrand contains only <p. For the term J fynp' dx we already have (1.5.2). 
For the term J fy>np" dx we produce 

' dx = - / <p'-j-fy" dx + <p'fy>. 

rb d2 

/ fy»<f" dX = - / if'-
•la Ja 

x=6 
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Similarly 

fb i, fb d? 
/ fy'lUp'" dX — - j (p—^fy>»dX 

'it ' d f , d2 t 
x=6 

and, in general, 

J" fy{nMn) dx = (-1)" J^ <fl£;fy<-> dx 

+ ( ^ v , - ̂ n-24 V) + • • • + (-irv-£r/^> dx dxr' 

c=b 

By (1.6.9) the boundary terms all vanish, and collecting results we have 

[ (>* - &* + £*'*' -"' •+ ^T~Jy^ ^ = o. (1.6. 12) 

Since this holds for any ip(x) € CQ (a, b), we can quote the fundamental 
lemma to complete the proof. • 

Let us investigate the natural boundary conditions for Fn(y). Now 
<p(x) € C(n\a,b), and there are no boundary restrictions on it. The first 
steps of the previous discussion still apply; however, now there are the 
boundary terms in the expression for the first variation of Fn(y) (this is 
the right-hand side of (1.6.11)), so in obtaining the equation analogous to 
(1.6.12) we should collect all the terms including the boundary terms. We 



38 Calculus of Variations and Functional Analysis 

rearrange the boundary terms, collecting coefficients of each (p^(x): 

'"' £f a. — " • ' - - d" 
dxh' + dx*-

x—b x—b 

dxJy^" *' ' dx2" 

, ( n -2 ) 
x=6 

+ ( /„(»-2) - J"/„(»-D + J~2 /»(«) ) V (" ^ 

+ ( ^ - ^ " + --- + ( - 1 )"~ 1 ^r/ , - )^ da;* da;" 

x=6 
= 0. (1.6.13) 

We now realize the common plan. First we consider (1.6.13) only on the 

subset C^n\a,b) of all <p(x) e &n\a,b). Then (1.6.13) reduces to (1.6.12), 

implying tha t (1.6.9) holds. Equation (1.6.13) then becomes 

fyWP' 
(n-1) 

+ ( fy^-D ~ -T-fyM ) f 

+ [fy 

A 
dx 

d 

(n-2) 
x—b 

u ( n - 2 ) /«(»-») + -JZtJv^l V' 
,("-3) 

x=6 

d d n _ 1 

+ ( / » - s v + -+(-ir da;71 T/</<"> V 

x=b 

= 0. (1.6.14) 

It is easy to construct the set of polynomials Pik(x), k = 0 , 1 , i 

0 , . . . , n — 1, with the following properties: 

d?Pi to 
dxi 

dx* 

= * ? . 

0, 

d?P{ iO 

dxi 

tiPix 

x=b 

dxi 

0, j = 0, l , . . . , n - 1, 

= <5f, j = 0 , 1 , . . . , n - 1 , 
x = b 

where 5\ is the Kronecker delta symbol defined by 8\ = 1 for i = j and 
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6f = 0 otherwise. The reader should construct them. Substituting these 
polynomials into (1.6.14), we get the natural boundary conditions for a 
minimizer y{x): 

x—b 

( / » ( n - l ) " lify' 

(/"(n-1) ~ tefy(n)) 

d , d2 , \ 
•*yin~2) ~ dx'y^'^ + dx^^y^J 

x=b 

= o, 

= 0, 

= 0, 

= 0, 

= 0, 

= 0, 
x=b 

/v-^:/«» + - + (-i)B-1^r/«c 
dx' 

d_ 
dx" 
d d™-1 

fv' - -jzh" + ••• + ( - 1)"" 1x^n4" 1) 

dxn 

lxn 

= 0, 

= 0. 
c=6 

Note that the last two conditions contain y(2n 1^(x). In general, the nat
ural boundary conditions contain higher derivatives than do the equations 
(1.6.8). 

What happens when we appoint some of the boundary conditions 
(1.6.8)? For example, let y(a) = c\ be the only boundary restriction for 
an unknown minimizer. Then we need to require that f{a) = 0, and we 
will get all the natural boundary conditions for y(x) except the one whose 
expression is the multiplier of <p(a) in the boundary sum (1.6.14). That is, 

f d f 
j n - 1 

= 0 

must be removed from the list. 
The reader should consider what happens to the natural boundary con

ditions in case the following conditions apply (consider each case sepa
rately): 
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(1) y(a) + ky'(a) = c, 
(2) y(a) + ky(b) = c. 

Example 1.6.1 Derive the Euler-Lagrange equation and natural bound
ary conditions for the energy functional whose minimizer defines the equi
librium of a bent cantilever beam described by parameters E, I. Assume 
the beam is subjected to a distributed load q(x), as well as a shear force 
Q* and torque M* applied to the end x = I: 

E(y) = ^J EI(y"f dx - j qydx- Q*y(l) - M*y'(l), 

y(0) = y'(0) = o. 

Note that the natural boundary conditions now have mechanical meaning: 
they account for the given torque and shear force at the "free" end x = I. 

Solution In this case the energy functional involves terms outside an 
integral, so it makes sense to repeat the derivation of the Euler-Lagrange 
equation for the functional J f(x, y, y',..., y^) dx in order to understand 
how M* and Q* come into the natural conditions. Sometimes it is useful 
to know not only a final formula but its derivation as well. 

Supposing y to be a solution of the problem, we consider the values of 
the functional E(y) on the bundle y + tip with arbitrary but fixed <p: that 
is, we consider E(y + tip) where <p(0) = 0 = <p'(0)- As a function of the 
variable t this takes a minimum value at t — 0, so its derivative at this 
point is zero. This implies the equation 

/ EIy"ip"dx - [ qtpdx- Q*ip(l) - M*tp'{l) = 0. 
Jo Jo 

Two integrations by parts in the first integral bring us to the relation 

/ (ElyW - q)vdx + EIy"<p'\l
0 - EIy'"<p\l

0 - QV(i) - M V ( 0 = 0 
Jo 

and, because ip(0) = 0 = <p'{0), we get 

/ (ElyW - q^dx + (Ely"(I) - M*)<p'{l) - (Ely'"(I) + Q > ( f ) = 0. 
Jo 

Now we repeat the steps connected with the choice of ip. First we take 
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those <p for which ip{l) = 0 = <p'(l), which brings us to the equation 

i 

{EIy{4) -q)cpdx = 0; 

then, because of the arbitrariness of <p, we invoke the main lemma to arrive 
at the Euler-Lagrange equation 

Ely{4)-q = 0 on [0,i]. 

Hence for any ip that does not vanish at x — I we have 

{Ely"{I) - M V ( 0 - {Ely'"{I) + Q > ( 0 = 0-

It follows that 

EIy"{l) = M*, Ely"'(I) = -Q\ 

which are the natural boundary conditions for the cantilever beam. 
From the strength of materials we know the relations between the de

flection y of the beam, the torque M, and the shear force Q: 

M = Ely", Q = -M' = -Ely'". 

We see that the natural conditions really do represent the conditions on 
the torque and shear force given at the free end x = I. 

Let us discuss the example further. The solution of this simple bound
ary value problem constitutes a considerable part of any textbook on the 
strength of materials. At one time people relied on graphical approaches, 
although it is now easy to solve the problem analytically. In practice we 
encounter largely piecewise continuous load functions q displaying linear 
and parabolic-type dependences. 

But the example did force us to consider a case which was not covered 
by the general theory of this section: the integrand can have points of 
discontinuity. Essentially nothing happened though. The Euler-Lagrange 
equation holds everywhere except at a discontinuity of q, and at such a 
point a jump in q will give rise to a jump in y(4\ However, the lower-order 
derivatives of y all remain continuous. 

In practice it is common to introduce external point torques and shear 
forces on the beam. What can we say in such cases? In the strength of 
materials, mechanical reasoning is used to show that at such points the 
moments and shear forces have corresponding jumps. Can we show this 
using the tools of the calculus of variations? 

L 
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We consider a particular problem of the bending of a beam with fixed 
ends. The beam carries a distributed load q and is a subjected to a point 
torque M* and shear force Q* at some point c. The total energy functional, 
which takes its minimum value on a solution, has the form 

\ j EI{y"f dx- J qydx- Q*y(c) - M*y' (c). 

The hypothesis for the model of a beam requires continuity of y and y' 
at all points including x = c. Let us see what actually happens at this 
point. As in the example above, the energy functional is be considered on 
the bundle y + tip where ip, together with its first derivative, goes to zero 
at the endpoints of the segment [0, /]. Since we are unsure of what happens 
at x = c it makes sense to split the integral into two parts: one over the 
domain [0, c] and the other over the domain [c, I]. We shall use the notation 
x = c — 0 to denote a limit taken from the left, and x — c + 0 to denote a 
limit taken from the right. The approach taken in the example brings us 
to the following equation: 

j (ElyW - q)<pdx + / {EIy{i) - q)<pdx 

+ EIy"{c - 0)<p(c - 0) - EIy"{c + 0)<p(c + 0) 

- EIy'"(c - 0)<p(c - 0) + EIy"'(c + 0)tp(c + 0) 

- MV(c) - Q*<p{c) = 0. 

Supposing ip(c) — 0 = </>'(c), we obtain the same equation Ely^ — q = 0 
on both segments [0,c) and (c, I]. Returning to the above equation with </> 
unrestricted at x = c, we see that the second and third derivatives of y do 
indeed have jumps at x = c defined by M* and Q*, respectively: 

EI(y"(c - 0) - y"(c + 0)) = M, EI(y'"(c - 0) - y'"(c + 0)) = - Q \ 

The reader may wish to consider the case in which at x = c the charac
teristic EI of the beam changes from EIQ to EI\. He or she can derive the 
conditions for a solution to the problem of equilibrium of the beam under 
load at point x = c. The solution is a point of minimum of the above total 
energy functional E(y). 
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1.7 Functionals Depending on Functions in Many Variables 

Although obtaining the Euler equation has become somewhat routine for 
us, we will not be fully prepared to treat practical problems until we can 
seek unknown minimizers in many variables. 

We begin with the two variable case. This case is the simplest; the ex
tension to three or more independent variables is straightforward. Consider 
a functional of the form 

F(u) = / / f{x,y,u(x,y),ux(x,y),uy(x,y))dxdy. (1-7.1) 

Here ux and uy denote the partial derivatives du/dx and du/dy, respec
tively. We confine ourselves to cases where S is simple; practical prob
lems normally involve such domains, and we thereby avoid a great deal of 
complexity. We therefore assume that 5 is a closed domain in R2 with a 
piecewise smooth boundary dS. (We do not elaborate on the meaning of 
"smooth." Our attitude toward this issue is common among practitioners: 
we simply require everything we need in intermediate calculations!) 

We will consider two main minimization problems for (1.7.1): the prob
lem with the Dirichlet boundary condition 

u(x,y) = V-(s), (1-7.2) 
OS 

and the problem "without" boundary conditions (i.e., the problem for which 
natural boundary conditions appear). 

We first obtain the analogue to the Euler equation for (1.7.1). Our 
general approach is to repeat the steps of § 1.2. Specifically we (1) in
troduce classes of functions over which we may consider the problem of 
minimum, (2) formulate the fundamental lemma for the two variable case, 
and (3) recall how to integrate by parts in the two variable case. 

We denote by C^k\S) the set of functions continuous on a compact 
domain S together with all their derivatives up to order k. The norm with 
which we define a neighborhood of a function is 

r.(jti = max max 
"° a+0<k{x,y)eS 

da+f3u{x,y) 
dxadyP 

CQ (S) is the subset of C^k\S) consisting of functions which, together 
with all their derivatives up to order k—1, are equal to zero on the boundary 
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OS. We shall use the corresponding notations C^°°^(5) and CQ'(S) for 
sets of functions infinitely differentiable on S. 

Lemma 1.7.1 Let g(x) be'continuous on S, and let 

g(-x)<p(x) dx dy = 0 (1.7.3) 
/ / . s 

hold for any function <p(x) £ CQ (S). Then g(x) = 0. 

Proof. We imitate the proof of Lemma 1.2.1. Suppose to the contrary 
that at some interior point xo of S we have g(xo) ^ 0, say g(x0) > 0. Then 
g(x) > 0 for all x in some disk CE having radius e and center xo. It is 
easy to construct a bell-shaped surface of revolution centered at xo- The 
corresponding function y>o(x — xo) G Co (^) gi v e s u s 

/ / g(-x.)(p0(x-x0)dxdy = / / g{x.)ip0{x. ~ x0) dxdy > 0, 

which contradicts (1.7.3). D 

To integrate by parts we use 

f[ &" , i ff9u7J J 
/ / u—— dxdy = — / / ——vdxdy + <p uvnids, 

JJs oxi JJs dxi JdS 

Here nj is the cosine of the angle between the unit outward normal n and 
the unit vector along the Xi axis (x, = x,y for i = 1,2, respectively). We 
shall use the length variable s to parameterize the contour dS. 

We now formulate the main result of this section. Let f(x,y,u,p,q) be a 
continuous function having continuous first partial derivatives with respect 
to all of its arguments. 

Theorem 1.7.1 Let u = u(x,y) G C^^S) be a minimizer of the func
tional JJS f(x,y,u,ux,uy) dxdy on the subset ofC^(S) consisting of those 
functions satisfying (1.7.2). Then the Euler equation 

holds in S. Here d/dx and d/dy are total partial derivatives, analo
gous to the total derivative in the one-dimensional case, when the function 
u = u(x,y) as well as its partial derivatives ux and uy are considered as 
depending on x and y respectively. 
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Proof. Consider the functional on the usual bundle u = u(x, y) + tp(x, y) 
where <p(x,y) is a function from C^^S); that is, it has first derivatives 
continuous on S and satisfies 

<p(x,y)\ds = 0. (1.7.5) 

The functional F(u + tip) for a fixed ip(x, y) becomes a function of the real 
variable t and takes its minimum at t = 0. Thus 

0 
dF{u + tip) 

dt t=o 

f(x,y,u + tip,ux + tipx,uy + tipy)dxdy dt {JJs 

= {fuf + fuxVx + fuyfy) dxdy. 

t=0 

Integration by parts in the last two terms of the integrand gives us 

/ / . 
f _ | J " ' _i_ •'"_» 

dx dy 
ipdxdy + <b (fUxnx + fUyny) ipds = 0. 

JdS 
(1.7.6) 

Now remembering that <p(x,y) satisfies (1.7.5), we get 

/ / . 

dfUx l dfuy 

dx dy 
ipdxdy = 0. 

Equation (1.7.4) follows from Lemma 1.7.1. 

(1.7.7) 

• 
Theorem 1.7.2 Let u = u(x,y) € C^2\S) be a minimizer of the func
tional ffs f(x,y,u,ux,uy)dxdy on C^(S) (without any boundary condi
tions). Then the Euler equation (1.7.4) holds in S, and u{x,y) satisfies the 
natural boundary condition 

\Juxnx + JUyfly) = 0. (1.7.8) 
dS 

Proof. We consider F(u + tip) on the bundle u + tip where <p(x,y) € 
C^iS) is arbitrary but momentarily fixed. For all such functions we es
tablish (1.7.6) using the same reasoning as above. Then let us restrict 
ip(x,y) to the set C^\S). This shows that (1.7.1) holds in S. So (1.7.7) 
holds whether ip belongs to C^](S) or CW(S). Hence 

j> {fuxnx + fuvny) ipds = 0. (1.7.9) 
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Now we use the fact that on S, tp = <p(s) is an arbitrary differentiable 
function. We do not prove the corresponding fundamental lemma for such 
an integral, but it is clear that a proof could be patterned after that of 
Lemma 1.2.1. (For this we could use the function <^o(x — xo) from the 
proof of Lemma 1.7.1; the point xo would be a chosen point of the boundary 
where the corresponding multiplier g(x) is not equal to zero, by the contrary 
assumption.) Hence (1.7.8) follows from (1.7.9). • 

Example 1.7.1 Demonstrate that for the functional 

*(u) = i [f{ul+u2
y)dxdy- ff Fudxdy (1.7.10) 

with F = F(x, y) a given continuous function, the Euler equation and the 
natural boundary conditions are 

Au = - F in S (1.7.11) 

and 

du 
dn 

= 0, (1.7.12) 
as 

respectively. Show that on a solution u* of the latter boundary value prob
lem, if it exists, the functional ^(u) attains a global minimum. 

Solution The derivation of (1.7.11) and (1.7.12) is straightforward. De
noting 

f=\(ul + ul)-Fu 

we get 

'"-iTf + ih~* -A«. 
which leads to (1.7.11). The left-hand expression in (1.7.8) is 

which is du/dn on the boundary. 
Before demonstrating the last statement in the example, we note that 

^(u) expresses the total energy of an elastic membrane. From physics 
we know that at points of minimum of a total energy functional for a 
mechanical system with conservative loads, the system is in equilibrium. 
In particle mechanics it is even shown that such an equilibrium state is 
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stable at a point of strict minimum. Let us see what happens in this case 
of a spatially distributed object. We suppose that a solution u* of the 
boundary value problem (1.7.11)-(1.7.12) exists. Consider the values of * 
over the bundle u* + <p, where tp is arbitrary: 

*(«* + (P) = \JJ ( « + V*)2 + K + Vy?) dxdy 

F(u* + ip) dx dy II. is 
= *(«*) 

+ 

+ 

/ / (K<Px + u*yipy) dxdy- / / Ftpdxdy 

\fJ{vl + <P2
y) dxdy. 

Because of (1.7.11)—(1.7.12) (which, in the above theory, were derived as a 
direct consequence of the following equality and thus are equivalent to it 
when u* is sufficiently smooth) we see that 

/ / (uxipx + u*yipy) dxdy- \\ Ftp dxdy = 0. 

So 

*(«* +<p)- *(u*) = \jj (tp2
x + <p\) dxdy > 0, 

which means that ^(u) takes its global minimum at u = u*. Here we 
cannot say anything about the stability of the membrane. To discuss this 
we must consider the problem from a dynamical viewpoint. 

We are in the habit of supposing that a minimizer exists for each prob
lem we encounter. But the problem of minimizing (1.7.10), which describes 
the equilibrium of a membrane, demonstrates that not every problem which 
seems sensible at first glance has a solution. Indeed, if we take u = c, a con
stant, then the first integral in (1.7.10) is zero. If JJsFdxdy / 0, then by 
changing c we make the value of the functional any large negative number. 
So the problem has no solution and (at least) the condition JJSFdxdy = 0 
becomes necessary for the problem to be sensible. In fact, this has a clear 
mechanical sense: it is the condition of self-balance of the forces. A free 
membrane subjected to a load F can move as a whole, but in this model we 
neglect its inertia, so the problem of equilibrium of the membrane without 
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the condition of self-balance of the load is senseless as we showed formally. 
Later we consider this question in more detail. 

1.8 A Functional with Integrand Depending on Partial 
Derivatives of Higher Order 

Now we derive the Euler equation for a minimizer w = w(x,y) of the 
functional of the form 

F(w) = / / f(x,y,w,wx,wy,wxx,wxy,Wyy)dxdy (1.8.1) 

on the functions of class C^ (S) satisfying the boundary conditions 

Mas =wo(s) 

and 

= wi(s). 
dw 
dn 

as 

We sketch the steps that have become routine. We suppose that a 
minimizer w = w(x,y) G C^4\S). Let <p(x,y) be an arbitrary but fixed 
function from CQ (S), which implies in particular that 

I n df = 0. (1.8.2) 
as 

F(w + tip) takes its minimum at t = 0 and thus dF(w + t<p)/dt\ Q = 0. 
This equation takes the form 

/ / {fw<P + fwxVx + fwyPy + fwxxVxx + fwxy<Pxy + fwyv<Pyy) dx dy = 0. 

(1 .8 .3) 

Supposing / has continuous derivatives of third order, we can integrate by 
parts in (1.8.3) and get 

/ / ( Jw a - / ™ * a . . i % " ' " a . 5 J ' dxJWx dyJ^y+dx2-

+ ^ f ^ + l&f"»)'PdXdy = 0- (L8-4) 
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The boundary terms vanish because of (1.8.2). Using Lemma 1.7.1 we 
obtain the Euler equation for the functional (1.8.1): 

dx Twx dy Jwv dx2 Jw'x + dxdy Jw*y Oy2 

valid in S. Here d/dx and d/dy are total partial derivatives when w = 
w(x,y) is considered as depending on its arguments x,y. 

We could derive the form of the natural boundary conditions for (1.8.1), 
but this is cumbersome so we prefer to treat an illustrative case. We shall 
consider a problem of minimizing a total energy functional, whose solution 
describes the equilibrium of an elastic plate with free edge. 

It is time to discuss how problems of minimization arose. Some came 
from geometrical considerations, like the isoperimetric problem mentioned 
in § 1.1; some were designed specifically as exercises, written out by anal
ogy with other, more or less easily solved, problems. But for the most 
part the real problems of the calculus of variations came from physics — 
in particular, mechanics. There it was found that minimizers or maximiz-
ers of certain functionals describe important states of physical systems. It 
is interesting to note how this idea progressed in importance. Early in 
the development of classical mechanics, variational principles were derived 
using the "fundamental" equations of statics and mechanics; they were 
regarded as consequences, although in many circumstances they were ac
tually equivalent. It was soon found that some problems were easier solved 
by variational methods, and the variational approach to mechanics gained 
a life of its own. In the theory of elasticity, for example, a great many 
variational principles have been derived; moreover, the name "variational 
principle" is applied not only to the minimization of functionals, but to 
any circumstance in which an important equation can be derived from an 
integro-differential equation having the form of the first variation of a func
tional being equal to zero, even if there is no functional for which it is the 
first variation. For example, the Virtual Work Principle arose as a con
sequence of the principle of minimum of potential energy of a mechanical 
system. But the former continues to hold in the case of non-conservative 
forces where it is impossible to compose the potential energy functional. 

Early in the development of linear elasticity, an energy functional was 
derived whose minimizer describes the equilibrium of an elastic body. The 
procedure was to write out the equilibrium equations, multiply by appro
priate components of the vector of displacements, and integrate over the 
region. Using integration by parts with regard for homogeneous Dirichlet 
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boundary conditions, from the terms with second-order partial derivatives 
it was possible to get a symmetrical form (in the components of the strain 
tensor) for potential energy. The originators of this method were comforted 
by the fact that the associated natural boundary conditions coincided with 
the boundary conditions assigned to the same problem when considered 
as a problem of equilibrium with applied forces given on the boundary. 
This led to the idea that the Principle of Minimum Potential Energy (or, 
correspondingly, the Virtual Work Principle) could be used to derive bound
ary conditions for models of elastic plates and shells. Workers investigat
ing such models had previously run into difficulty in posing appropriate 
boundary conditions: upon simplification from the 3-D case, uncertainties 
had arisen regarding precisely what force conditions should be appointed on 
the boundary of an object. The variational formalism provided the needed 
result in a simple fashion. Why are we taking the time to discuss this now? 
We are going to consider the problem of equilibrium of an elastic plate 
from the viewpoint of the calculus of variations. The first step is to formu
late the energy functional. The left-hand side of the equation describing a 
thin elastic plate bent under load contains a biharmonic operator. In this 
case there is no uniquely defined procedure to derive the energy functional. 
Moreover, integration by parts can yield several expressions for the energy 
of an elastic plate with homogeneous Dirichlet conditions (1.8.2). For each 
of these forms one can derive the natural boundary conditions, but only 
one form gives the conditions corresponding to mechanics. So to formulate 
the problem (i.e., the functional) properly, one should have some knowl
edge of mechanics — perhaps this is why so many pure mathematicians 
prefer to study only classical problems where everything is formulated in 
advance! To work purely mathematical exercises, one is seldom required to 
know the actual physical behavior of the object under consideration. But 
correct mathematical procedures often depend in large part on the details 
of a particular realm of application. 

The energy functional of an isotropic homogeneous plate bending under 
load F = F(x, y) is 

E(w) = — J J (w2
xx + w2

yy + 1vwxxwyy + 2(1 - v)w2
xy) dxdy 

- if Fwdxdy (1.8.5) 

where D is the rigidity of the plate, v is Poisson's ratio, and w = w(x,y) 
is the deflection at point (x, y) of S, the compact domain occupied by the 
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mid-surface of the plate. A minimizer of E(w) describes the equilibrium de
flection of the mid-surface. Using the standard method, we shall derive the 
Euler equation for the minimizer and the corresponding natural boundary 
conditions. 

Let w e C<-4\S) minimize (1.8.5) over C^(S). Consider E(w + tip) at 
a fixed ip G C^2\S) as a function of the parameter t. It takes its minimum 
at t = 0, so as a consequence we have 

D \ \ [WXXlfXX + WyyiPyy + V(WXX(Pyy + Wyy(pxX) 

+ 2(1 — v)wxyipxy\ dxdy — / / Fipdxdy = 0 

which is a particular case of (1.8.4). 
Now it is necessary to integrate by parts in the first integral on the left. 

We get 

D [(wxx + v"wyy)ipxx + (wyy + vwxx)<pyy + 2(1 - v)wXy<pxy] dx dy 

''II. -D , 
' is . 

d . , d , . 

+ (1 - v)wxyytpx + (1 - v)wxxy<py 

+ D f [(WXX + VWyy)tpxnx + (Wyy + VW^IfiyUy 
JdS 

dxdy 

as 
+ (1 - v)wxy(ipxny + <pynx)]ds (1.8.6) 

where n, the unit normal to the boundary dS, has components (nx,ny). 
Note that we have preserved the symmetry of the expressions. Integrating 
by parts once more in the first integral on the right, denoted by A, we get 

A = D [(wxx + vwyy)xx + (wyy + vwxx)yy + 2(1 - iy)wxxyy}ip dx dy 

- D j> [(WXX + VWyy)xnx + (Wyy + VWXX\Uy 

+ (1 - v)(wxyynx + wxxyny)](pds. 

The first integral in A is 

D (wxxxx + 2wxxyy + Wyyyy)ip dx dy = D \\ ip^2w dx dy. 
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Thus (1.8.6) takes the form 

D / / ipA2wdxdy - / / Fipdxdy 

+ D <j) [(WXX + VWyy)tfxnx + (Wyy + VW^^yUy 

+ (1 - v)wxy(ipxny + <pynx)] ds 

- D j> [(WXX + VWyy)xnx + (Wyy + 

+ (1 - v){wxyynx + wxxyny)]ipds = 0. (1.8.7) 

First we consider the subset of admissible functions <p(x,y) satisfying 
(1.8.2). Equation (1.8.7) reduces to 

/ / . 
(DAzw-F)<pdxdy = 0. (1.8.8) 

s 

By the fundamental lemma we obtain the Euler equation 

DA2w-F = 0 in S. (1.8.9) 

Because of (1.8.9) the equality (1.8.8) holds for any admissible ip(x,y), 
thus the two first integrals over S disappear from (1.8.7). In equation 
(1.8.7) there remains the sum of two contour integrals that equals zero for 
any <p£CW(S). 

We might think that since we have three arbitrary functions ip, px, tpy 

on S, we could set their multipliers equal to zero and obtain three natural 
boundary conditions. But this is incorrect. We see this first on mechanical 
grounds: these "boundary conditions" would depend on x and y, hence 
would not be invariant under coordinate rotations. Mathematically, it ap
pears that we cannot choose tp, ipx, and <py independently on S. Indeed 
let us fix ip on S: then its derivative <pT in the tangential direction r is 
determined uniquely — only the derivative ipn of ip in the normal direction 
is really independent of <p on the contour. 

Thus we first need to introduce this change of coordinates, getting a 
local frame ( T , I I ) . The transformation formulas for derivatives are 

<Px = <pnnx - (psny, ipy = <PnTiy + (psnx. 
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Let us put these into the integrand of the first contour integral: 

(WXX + VWyy)(pxnx + (Wyy + VWXX) ifyUy + ( l ~ V)W<Xy((f' XHy + <PytlX) 

= (wxx + vwyy)(<pnnx - ipsny)nx + (wyy + vwxx)(ipnny + <psnx)ny 

+ (1 - v)wxy[(<pnnx - (psny)ny + (<pnny + ipsnx)nx\ 

= (1 - v){(wyy - wxx)nxny + wxy(nl - ny)}ys 

+ {{WXX + VWyy)nx + (Wyy + VWXX)Tly + 2( l ~ V) WXy Tlx Tly } (fn 

= (1 - v){(wyy - wxx)nxny + wxy(n
2
x - ny)}ips 

+ {vAw + (1 - u)(wxxnx + WyyUy + 2wxynxny)}(pn. (1.8.10) 

Change the integrand of the first contour integral in (1.8.7) by (1.8.10) 
and remember that <ps = df/ds and tpn = dip/dn: 

r fi 
D f (1 - v){{wyv - wxx)nxny + wxy(n

2
x - ny)}—ds 

JdS us 

+ D j> {vAw + (1 - v)(wxxn
2
x + wyyn

2 + 2wxynxny)} — ds 

- D <f> [(wxx + vwyy)xnx + (wyy + vwxx)yny 
JdS 

+ (1 - v)(wxyynx + )]<pds = 0. (1.8.11) 

If S is smooth enough we can integrate by parts in the first integral 
with respect to s. This gives 

D f (1 - v){{wyy - wxx)nxny + wxy{n2
x - nl)}— ds 

JdS Vs 

= -D(l - v) f <p-^-{{wyy - wxx)nxny + wxy(nx - n2)} ds. 
JdS Vs 

It follows that 

D f [(WXX + UWyy)xnx + (iVyy + VWxx)yTly 
JdS 

+ (1 - v)(wxyynx + wxxyny)\ 

d_ 

' ds1 

n r\ 

+ D f {vAw + (1 - v)(wxxn
2
x + Wyy-riy + 2wxynxny)}— ds = 0. 

JdS vn 

+ (1 - v)-r[{wyy - wxx)nxny + wxy(n
2
x - n2

y)\\^ds 

Since we can independently choose tp and dip/dn, we get the following two 
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natural boundary conditions: 

^Aiu + (1 - v)(wxxnx + WyyTiy + 2wxynxnv) = 0, 
dS 

[(WXX + VWyy)ynx + (Wyy + VWXX)yTly + ( l ~ l>){WXyynx + W^yUy)} 

' ds 
(1 - V)-T-[(WVV -wxx)nxny +wxy{n2

x - ny)\ = 0. (1.8.12) 

The first means that the shear force on the lateral surface of the plate is 
zero, whereas the second means that the bending moment is zero. 

We have assumed that dS is sufficiently smooth so we could integrate 
by parts in (1.8.11). At corner points (1.8.12) is not valid. We leave it to 
the reader to derive an appropriate corner condition. 

1.9 The First Variation 

This book is written for those who will use the calculus of variations. Al
though our goal is to keep the presentation simple, continued exploitation of 
the same technique would prevent real progress. We need ideas applicable 
to more complex problems. As before, these will be extensions of elemen
tary ideas from calculus. A principal analytical tool is the differential of a 
function. The first differential extracts the main part of the increment of 
the function when its argument changes by a small amount Ax. This main 
part is linear with respect to Aa;. In this way, we approximate the change 
of a smooth function in some neighborhood of a point by an expression 
linear in Ax. The extension to functional is called the first variation. 

A few technical details 

Definition 1.9.1 We say that f(x) = o(g(x)) when x —* XQ if 

lim 4 4 = 0. 
x-^x0 g(x) 

Here x can be a real variable or an element of a more general metric or 
normed space; in the latter case when we write x —> xo we refer to conver
gence in that space. We often use the abbreviated notation / = o(g) and 
say that / is of a higher order of smallness than g. 
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So if the o relation holds then given any e > 0 we can find 5 > 0 such 
that | / (x)/g(x) | < e whenever ||x — â oII < S.6 Other observations are as 
follows: 

(1) The functions f(x) and g(x) are not required to possess individual 
limits as x —> Xo; only the ratio must possess a limit. 

(2) In practice, g(x) will usually be some power of a simple real variable x. 

The statement f(x) = o(l) as x —• xo, for example, means nothing more 
than Y\mx^Xo f(x) = 0. If f(x) = o(x — xo) as x —> XQ, then f(x) tends to 
zero even faster as x —> XQ since the ratio f(x)/(x — XQ) tends to zero even 
though its denominator tends to zero as x —> xo-

Definition 1.9.2 We say that f{x) = 0(g(x)) as x —> x0 if in some 
neighborhood of XQ an inequality 

/(*) 
9{x) 

< c 

holds for some constant c. We often use the abbreviated notation f = 0(g) 
and say that / is of the same order of smallness as g. 

Let us consider some examples of this notation as well. The statement 
f(x) = 0(1) as x —> 0 means that in some neighborhood of zero we have 
| / (x) | < c (i.e., / is bounded in this neighborhood). If f(x) = 0(x) as 
x —> 0, then in some neighborhood of zero we have | / (x) | < c\x\. This 
implies that f(x) —> 0 as x —-> 0, hence that / (x) = o(l). But / (x) = 0(x) 
tells how fast f(x) tends to zero. 

Let f(x) and its first n + 1 derivatives be continuous in an interval about 
x = xo- Then according to Taylor's theorem 

f{x) - / (xo)+ / ' (xo) (x-x 0 ) + - • .+l—¥°L(x-xQ)n+J ^}(x-x0)
n+1 

for some ^ between xo and x. The last term on the right is the so-called 
Lagrange form of the remainder and is clearly 0(\x — xo|™+1). Since we 
prefer to have this in another form, let us add and subtract the term 

/ ( " + 1 ) ( ^ o ) ^ , n + 1 

(n + 1)! 
-(X -XQ)r 

6Here we refer to a more general vector norm. A reader unfamiliar with the subject 
of norms will find a more complete discussion in § 1.11. For now it is sufficient to think 
in terms of real numbers, where the role of norm is played by the absolute value. 
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to obtain 

/ ( " + 1 ) ( * o ) , _ _ ^ + i f(x) = f(x0) + f'(x0)(x -x0)-\ 1- • (x - xQ 

[/("+D(0 - / ( " + D (g0)] _ + 1 
+ (n + 1)! l ° j ' 

In this way we have created a Taylor expansion with one more term and 
a new "remainder." Now since /™+1(x) is continuous, the bracketed term 
/(™+1)(£) — /(™+1)(:co) tends to zero when x —> xo (recall that £ is an inter
mediate point of (x,xo)). This means that the ratio of the new remainder 
to the factor \x — xo | n + 1 will tend to zero as x —> XQ and we can write 

f(x) = f(xQ)+f\xo){x-xo) + - • - + J , , W\x-xo)n+1+o {\x - x0\
n+1) . 

[n +1) ! 

Let us summarize this form of Taylor's theorem, known as Peano's form: 

Theorem 1.9.1 Let f{x) and its first n derivatives be continuous in an 
interval about x = XQ. Then 

f(x) = /(xo) + f-~^{x - xo) + • • • + ^ ^ ( x - xo)" + o{\x- x0\
n) • 

1! n! 

With this we can say something about the behavior of the remainder term 
in the nth-order Taylor expansion even if we know nothing about continuity 
of the (n + l)th derivative. 

Back to the first variation 

In calculus we define the first differential as follows. We consider the in
crement f(x + Ax) — /(x) of a function / (x) of a real variable x. If it is 
possible to represent it in the form 

f(x + Ax) - f(x) = AAx + w(Ax) (1.9.1) 

where w(Ax) = o(Ax) as Ax —• 0, then 

• AAx is called the first differential of f at x, and is denoted by df(x), 
• A is the derivative of / at x, denoted by / ' (x) , and 
• the increment Ax of the argument x is redenoted by dx and is called 

the differential of the argument. 
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We may therefore write 

df{x) =AAx = f'{x)dx. 

In the mind of a calculus student the differential dx and its corresponding 
df(x) are extremely small quantities. Let us now banish this misconception: 
both dx and df(x) are finite. When dx is small then so is df(x) and it 
approximates the difference f(x + dx) — f(x): the smaller the value of dx, 
the better the relative approximation. However, neither dx nor df(x) is 
small in general. 

Let us repeat the same steps for a functional. This is especially easy 
to do for a quadratic functional. These arise in physics, corresponding to 
natural laws that are linear in form (of course, linearity is often a condition 
imposed rather artificially on models of real phenomena). Let us consider, 
for example, 

F(u) = X / / (ul + ul)dxdy ~ / / Fudxdy. 

We denote the "increment" of the argument u = u(x) by <p(x). We note 
that <p(x) must have certain properties; it should be admissible in the sense 
of § 1.5. (Later we shall soften the smoothness conditions for this problem.) 
In mechanics ip is usually denoted by 8u; this maintains a visual similarity 
between the two notions of increment dx and 5u, and in this notation 5u is 
called a virtual displacement. Now 

F(u + tp) - F(u) = (uxipx + Uyipy) dx dy - / / Fudxdy 

+ \JJ(vl+<P2y)dxdy. (1.9.2) 

The first two integrals on the right are linear in <p and pretend to analogy 
with the differential of calculus; together they are called the first variation 
of the functional F(u) at u: 

II. (ux<px + Uyipy) dx dy — / / Fipdxdy. (1.9.3) 
s JJs 

The third integral in (1.9.2), quadratic in ip, is analogous to CJ(AX) in 
(1.9.1). We should introduce the smallness of the increment ip in such a 
way (and we did this in § 1.5!) that this quadratic term becomes infinitely 
small in comparison with the linear terms. 
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Ul 

In § 1.5 we found that if u = u(x) is a minimizer of F(u), then the 
expression (1.9.3) is zero for all admissible tp: 

(ux<Px + Uytfy) dx dy - II Ftpdxdy = 0. (1.9.4) 

Prom this we derived the Euler equation (1.7.11) for the membrane. We 
now derive (1.9.4) in a different way. Let us suppose that u = u(x,y) is 
a minimizer of F(u); that is, F(u + tp) — F{u) > 0 for any admissible tp. 
Assume, contrary to (1.9.4), that 

/ / (uxtp*x + Uyipy) dxdy - / / Ftp* dx dy ^ 0 

for some admissible tp *. Then putting another admissible function tip* into 
the inequality F(u + <p) — F(u) > 0, we get 

0<F(u + t(p*)-F(u) 

/ / {uxtipl + uytipy) dx dy - \\ Ft<p*dxdy 

t2(vl2 + <p;2)dxdy 

/ / [uxtp*x + Uyip*y) dx dy - II Ftp* dxdy 

JJ(^x
2+tpf)dxdy. (1.9.5) 

Suppose the bracketed term differs from zero. If we take t such that it 
is sufficiently close to zero and the term t[- • •] is negative, then the term 
which is quadratic in t is much smaller than the term which is linear in t. 
Therefore F(y + tip) — F(y) < 0, which contradicts the leftmost inequality 
of (1.9.5). So (1.9.4) holds for any admissible tp. 

It is clear that we can repeat everything in terms of the plate problem 
of § 1.7. The differences are only technical. 

We used the fact that at least for some (positive and negative) small 
t the function ttp* is admissible. In the membrane problem this is trivial. 
However, in some problems the set of admissible functions is restricted (e.g., 
it may be that tp > 0); free choice oft is thereby precluded. Such problems 
fall outside the scope of the classical theory, and in fact belong to the theory 
of variational inequalities. 

We consider a general case of the simplest functional with respect to 
functions satisfying any of the types of boundary conditions we have dis-

= t 

2 
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cussed. Let us find its increment over the increment <p(x) of the function 
y(x). So we consider the increment of the functional 

F(y) = f f(x,y,y')dx 
J a 

when the argument gets an admissible increment <p = tp(x). Whether the 
boundary conditions are stipulated or not (free ends), we have 

F(y + tp)- F(y) = f [f(x,y + <p,y' + iff) - f(x,y,y')} dx. 
J a 

Regarding the arguments of / as simple real variables, we can apply the 
Taylor expansion to / . If / has continuous second partial derivatives, then 

f(x, y+<p, y'+ip')-f(x, y, y') = fv(x, y, y')p+fy> (x, y, y')<p'+0(\<p\2 + \(p'\2). 

Thus 

F{y + <p) - F(y) = / [fy{x,y,y')<p + fy>(x,y,y')ip']dx 
J a 

+ o(j\\ip\2 + y\2)dx\. (1.9.6) 

The last integral is of the order 0(|M|C(i)/Q b0 because 

A M 2 + |^'|2)^< j\\v\ + W\)2dx 
J a J a 

/ i \ 2 <{b-a) max(\ip\ + \<p'\) 
xe[a,b\ 

< (6 - o) iaax(\<p\ + \<f/\) 
x€.[a,b\ 

For admissible functions ip that are small in the norm oiC^\a,b), the last 
term on the right-hand side of (1.9.6) has a higher order of smallness in 
<p than the integral term which is linear in tp. Thus we have a complete 
analogy with the first differential of a function. The expression 

6F(y,tp) = I [fy(x,y,y')v + fy,(x,y,y')<p'}dx (1.9.7) 
J a 

is called the first variation of F(y). We often denote it simply by 5F. 
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Let y = y(x) be a minimizer of F(y) for some boundary conditions 
considered above. First we demonstrate that for any admissible function ip 
the equation 

/ [fy(x,y,y')<p + fy,(x,y,y')ip'}dx = 0 (1.9.8) 
J a 

holds. Indeed, for any admissible ip we have F(y + <p) — F(y) > 0. Assume 
that (1.9.8) fails at some admissible ip*. We suppose that tip* for small t is 
also admissible so that 

0<F(y + t<p*)-F(y) 

= t [ {fy(x,y,y')ip*+fy,(x,y,y')v*'}dx + 0(t2\\<p*fc(lHatb)). (1.9.9) 
J a 

Now the smallness of the increment of the argument is governed by t. For 
small t the sign of the right-hand side of (1.9.9) is determined by the first 
integral term. Since we can choose t to be negative or positive and its 
coefficient is not zero, we can find a small t* such that 

t* / [fy(x,y,y')<p* + fy,(x,y,y')ip*'}dx + O(t*2\\v*\\2
c{1HaM)<0. 

J a 

This contradicts the leftmost inequality of (1.9.9). 
Let us note that in dF(y + tip)/dt\ we obtain the same expression 

(1.9.7), i.e., the first variation of the functional. The two methods of ob
taining the first variation are equivalent if the integrand / is sufficiently 
smooth. But in the general theory of functionals our method of differentia
tion (i.e., the selection of the linear part of the difference F(y + tp) — F(y)) 
corresponds to the use of the Frechet derivative, whereas the computation 
of dF/dt\t=o corresponds to the use of the Gateaux derivative. 

The reasoning of this section can be repeated for any of the functionals 
and their associated minimum problems we considered earlier. We leave 
this to the reader as a number of exercises. 

Variational derivative 

We have seen that the Euler equation is analogous to the equation y'(x) = 0 
from elementary calculus. Let us consider another approach to deriving 
the Euler equation. This will provide a representation for the increment 
of a functional F(y) under bell-shaped disturbances of y(x). The resulting 
formula will be needed later for treatment of the isoperimetric problem. 
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Let us preview the approach before tackling the details. We first recall 
the way in which we proved the fundamental lemma of the calculus of 
variations. The lemma states that f(x) must vanish if it is continuous and 
if 

/ 

b 

f(x)g(x) dx = Q 

holds for an arbitrary continuous function g(x) that goes to zero at the 
endpoints a, b. However, the proof made use of only a subset of such func
tions g(x): those that were bell-shaped and whose supports were small 
enough. (The support of a function g(x) is the closure of the set over which 
g(x) ^ 0.) Because of this we can reframe the problem of minimizing a 
functional in terms of disturbance functions taken from this subset only. 
Such a setup will not lend itself to proof that a solution is a minimizer, but 
will nonetheless provide an alternative derivation of the Euler equation. 

So we take yo(x) to be a minimizer of the simplest functional, and 
instead of considering all disturbances ip(x) of ya{x), consider only bell-
shaped disturbances <p(x) having small supports inside [a, b]. The main 
part of the increment of the functional will be given by the same formula 
as when all disturbances are considered: 

I (fv-&*)**)**. 
We will then restrict the set of possible disturbances (p(x) to an even smaller 
subset: the bell-shaped functions having small support centered at a point 
xo G (a, b). If the support of a given <p(x) is small enough, then the func
tion fy — dfyi/dx, which is supposed continuous, is almost constant on the 
support interval; up to infinitesimals its value can be taken to equal its 
value at x = XQ. Hence we will be able to split the above increment into 
two parts: one of these, the main part, is 

fv ~ Txjv l ip(x) 
J a 

dx. 

rb The integral J <p(x) dx is the small area AS that lies under the bell of ip(x). 
The expression in parentheses is recognized as the left-hand side of the Euler 
equation, and we therefore expect it to vanish along the minimizing curve 
and thus at x = XQ. AS justification (and, moreover, to obtain a formula 
for the increment of a functional on bell-shaped small disturbances) we 
shall prove that the error in approximating the above main increment with 
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this term is small in comparison with AS when the latter tends to zero. 
Unfortunately this is not valid if we take just any bell-shaped functions 
for the limit passage. It turns out that we must further restrict <p{x) to 
those functions whose amplitudes tend to zero along with AS (note that 
this subset of disturbance functions would still be sufficient to prove the 
fundamental lemma). Taking only these functions and having the main 
part of the increment to zero we will obtain, aside from infinitesimals, 

*F=(fy-lfy AS = 0. 

We will then divide through by AS and perform the limit passage. The 
quantity that will appear on the left-hand side, i.e., the limit of the ratio 
5F/AS under the conditions described above (if it exists), will become 
known as the variational derivative of F(y) at the point XQ for the curve 
yo{x). For any y(x), not necessarily a minimizer, the main part of the 
increment of the functional on such ip(x) is given as 

h dxh AS, 
X=XQ 

and all the rest has the order of infinity smaller than AS. Let us now realize 
this plan in detail. 

So we note that in the fundamental lemma, instead of having if range 
over C o ' ( a , b) we could restrict it to the class of bell-shaped functions. 
We could in fact restrict ip to a particular set of bell-shaped functions; the 
only thing needed in this is the possibility to get the support of a function 
of this set of any small length at any point of (a, 6). Let us base this set of 
functions on the particular function 

The set of functions of the form Aipe(x - xo) when a<x0—e<xo + e<b 
is called B. It can be shown that B is contained in C$ (a, b). We repeat 
that we can use the class B instead of CQ (a, b) in the formulation of the 
fundamental lemma. 

Let us introduce 

rb rxa+e 

o~A,e= \ Aipe(x — xo) dx = A (p£(x — xo)dx 
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and consider the first variation of F(y) at some y corresponding to an 
increment Atpe(x — XQ) = ip G B: 

6F(y,tl>)= f [fy(x,y,y')i> + fy,(x,y,y')ip'}dx 
J a 

rx0+e 

J xa—e 
[fy(x, y, y')tp + fy' (x, y, y')ip'\ dx. 

Routine integration by parts gives 

fXfj+E F 
5F(y,i>)= / 

Jxn 

fy(x,y,y') - —fy>(x,y,y') tpdx. (1.9.10) 

We now recall a useful result from calculus, the second mean value theorem 
for integrals: 

Theorem 1.9.2 Let f(x) be continuous on [a,b]. If g(x) is integrable 
and does not change sign in [a,b], then 

rb /-6 

/ f(x)g(x) dx = /(£) / g(x) dx 
J a J a 

for some £ S [a, b]. 

A proof can be found in any good calculus text. Returning to (1.9.10), 
we assume the term in brackets is continuous and write 

SF(y,1>) = fy{x,y,y') - —fy>(x,y,y') 

fy(x,y,y')- —fy>(x,y,y') 

' J x. 

xo+e 
ipdx 

0~A,e 
x=Q 

where £ G (XQ — e, XQ + e). If e and GA,S tend to zero simultaneously, then 

5F(y,iP) fy(x,y,y')- —fyl{x,y,y') o-A,e + o(\aAie\)- (1.9.11) 

We shall use this formula later. Now let us remark that from this relation 
we get 

&F(y,il>) 
lim 

<TA,e—>0 OA E 
£->0 

fy(x,y,y')- —fy'{x,y,y') 

On the right we get the left-hand side of the Euler equation, so this limit 
deserves a special name. We call it the variational derivative and denote it 
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by 

Sy 
= lim 6J^1. 

x _ X n <M,»-»O a A e 

x-x0 £^0 

Thus formula (1.9.11) can be rewritten as 

'5F 
SF{y,1>) 

\ oy 
a)aA,£ (1.9.12) 

X — XQ 

where a —• 0 as aA,s —> 0. The reader can see the convenient analogy with 
the notation for the calculus of functions. 

The first variation is the main part of the increment of a functional. 
We are interested in extending (1.9.12) to the increment of F(y). This is 
possible if we suppose that the limit passage aA>e —» 0, £ —> 0 can be done 
in such a way that 

i-xo+e 

/ (V>2+V ')dx = o(aA,e) (1.9.13) 
Jxo—e 

when aAt£ —> 0 and e —> 0. This happens, say, if e relates to A by the 
formula \A\ = e3. It is enough to consider the case xo = 0; after the change 
of variables x = eu we have 

<? A,! AeK\ where K\ = / exp I —T. ) du. 

J-i W-IJ 
Observe that K\ is a positive constant. Also 

. „ . 2 AA2e4x2 ( 2e2 

W ) = 7T2 3 T I e x P ' (x2 — e2)4 \a;2 — E2 

and we obtain 

I 
x0+e A2 

(V>2 + i>'2) dx = K2A
2e + K3 — 

IXQ-S 

where K2 and K$ are the positive constants 

K2=Lexp (^T) du> Ks=L w^wexp (^i)du-
Hence 

-LfV + ̂ ^ + f i 
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The first term on the right tends to zero with e, as does the second term 
if we take |A| = £3. It is therefore possible to choose A in such a way that 
the left-hand side tends to zero as e tends to zero, as required by (1.9.13). 

Let us denote by B$ the subset of B consisting of those functions i/> for 
which \A\ = e3. Note that the fundamental lemma continues to hold if p> 
ranges over the set BQ rather than over the whole class CQ (a,b). When 
\A\ = e3, we denote GA,E by ae. Note that aE does not determine OA,E 
uniquely; however, the sign ambiguity is easily resolved for a given A by 
noting that a£ has the same sign as A. 

From the three formulas (1.9.6), (1.9.12), and (1.9.13), we get 

F(y + rl>)-F(y)=t^ + /3 K 

where (3 —• 0 when e —> 0, or 

AF(y, </0 = F{y + V) - F{y) = (jy - ^fy + fl) 

For the above limit passage we get the Euler equation as 

6F(y,<<l>) SF 

ffr-

hm 
8y 

= 0 for all XQ 6 (a,b). 

(1.9.14) 

(1.9.15) 

(1.9.16) 

Brief review of important ideas 

The increment F(y + </?) — F(y) of the functional F(y) can be written as 

F(y + <p)- F{y) = 8F(y, <p) + 0(\\<pfcllHatb)) 

where the first variation 

5F(y,<p)= / [fy(x,y,y')<p + fy>(x,y,y')<p']dx 
J a 

is the principal part (i.e., the portion of the increment that is linear in ip). 
We have 

6F(y,<p)=0 

when y = y(x) is a minimizer of F(y) for some given boundary conditions; 
this holds for any admissible increment <p of the function y. A functional 
is said to be stationary at y if its first variation vanishes. 
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The idea of the variational derivative is analogous to the idea of a partial 
derivative of a function of many variables. We define the variational deriva
tive of a functional F(y), at a point xo, for a curve y = y(x), as follows. We 
give y(x) an increment ip(x) which is nonzero only in a small neighborhood 
of XQ; we choose f{x) as a small bell-shaped bump, and denote the area 
between it and the z-axis by A5 . We then get the main linear part 6F 
of the increment AF under this special type of localized disturbance. By 
continuity of the Euler expression fy — -£^fy' we can approximate SF as the 
Euler expression times AS, hence can study the ratio 5F/AS as AS —> 0 
in such a way that the bump disturbance shrinks in both width and height 
(the former requirement assures that we get localized information relevant 
to the point xo, and the latter requirement assures that the remainder terms 
tend to zero faster than the main part). So we seek the ratio of the small 
change in the functional value to a small change in area under y(x), when 
that change occurs near XQ. The variational derivative is given by 

5F_ 
5y ~ I fv J^ fy A. 

dx" 

1.10 Isoperimetric Problems 

We have found a way (1.9.16) of obtaining the Euler equation by setting 
the variational derivative to zero. We now apply this to the solution of an 
isoperimetric problem. 

It is said that the first problem of this type was solved practically by 
Dido, legendary queen of ancient Carthage, who was offered as much land as 
she could surround with the skin of a bull. Using a fuzzy formulation of this 
"mathematical" problem, she cut the skin into thin bands, tied them end 
to end, and surrounded the town with this long "rope." Note that Dido's 
problem was quite hard; several issues had to be addressed, including (1) 
how to get the longest rope from the skin, (2) how to find the closed curve 
of a given length that would enclose the greatest planar area, and (3) how 
to choose the most desirable piece of land. We shall only be able to treat 
the second of these issues here! Let us begin by formulating the 

Simplest Isoperimetric Problem. Find the minimum of the functional 

F(y) = / f{x,y,y')dx 
J a 
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from among the functions y e C^{a,b) that satisfy 

y(a)=c0, y(b) = cu (1.10.1) 

and 

G(V)= I g(x,y,y')dx = l (1.10.2) 
J a 

where I is a given number. 

Condition (1.10.2) is analogous to the condition that the length of a 
curve is given. We know a similar problem from calculus: given a restriction 
g(x) = c, find a minimum of f(x). This is solved using Lagrange multipliers: 
there is a constant A such that a minimizer of the problem is a stationary 
point of the function f(x) + \g(x) — that is, a solution of the equation 
f'(x) + \g'(x) = 0. We correctly surmise that something similar should 
exist for our isoperimetric problem. 

Note that our previous technique cannot be used because the restric
tion (1.10.2) has complicated the notion of the neighborhood of a function. 
Indeed, if g(x, y, y') is not linear in y and y' then we cannot expect that 
a sum of two admissible small increments of a minimizer is also admissi
ble: condition (1.10.2) can fail for the sum. The same comment applies to 
increments of the form tip if ip is an admissible increment. However, the 
technique of § 1.8 does not depend on such transformations in the set of 
admissible increments, so we will try to use it. 

Theorem 1.10.1 Let y = y(x) be a local solution of the Simplest Isoperi
metric Problem, and suppose y is not an extremal of the functional G(z). 
Then there is a real number A such that y = y(x) is an extremal of 
F(z) + XG(z) on the set of functions from C^\a,b) satisfying (1.10.1). 

Before giving the proof let us note that the problem of finding this 
extremal is well defined in principle. Indeed, a solution of the Euler equation 
for F(z) + XG(z) has, in principle, three independent constants: A, and the 
two independent constants expected in the general solution of the (second-
order) Euler equation. These can be determined from (1.10.2) and (1.10.1). 

Proof. We will try the results of § 1.8. We need to consider the set 
of small increments of the minimizer such that the incremented functions 
satisfy both (1.10.1) and (1.10.2). So we construct the set of increments 
by combining two bell-shaped functions of the class Bo with centers of 
symmetry at x\ and x%, x\ < x-i'- that is, Ai<pEi{x — Xi), \Ai\ = ef, i = 1,2. 
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Denote this increment by r)(x) = Y^i Aifeiis: — %i)- We can assume that 
£j < (%2 — x\)/2, so the two nonzero domains of such an increment do not 
intersect (or we could argue that we introduced two bell-shaped increments 
of y at different points successively). Since the supports of the two bell-
shaped functions do not intersect we can extend (1.9.14) to this case: 

AF(y,V) = 
/ 

yy ~dx~fy'j 

+ 

" 
+ «1 

X=X\ 

[fv dxfy'j 

C e i 

+ a2 
X—X-2 

for i = 1,2 we have 

rXi+e 

°ei = Ai / (fei {X - Xi )dx, \Ai\=e\ 

(1.10.3) 

and ai —> 0 when aei —> 0. 
We must choose the increment 77 so that y + 77 satisfies (1.10.2). Thus 

we have G(y + rj) — G(y) = 0. This and the analogue of (1.9.15) for 
G(y + rj) - G(y) imply 

(ffw- J^') 
" 

+ /3i CT£I + \9y- - Tx9y) 
" 

+ /32 

with the same <7ei as in (1.10.3) and /% —> 0 when cr£i —> 0. 
Since y = y(x) is not an extremal of G(z), there is a point X2 6 (a,b) 

where 9y — -^9y' T^ 0. For sufficiently small £2 we get fa a s small as we 
wish, thus the second square bracket is nonzero in this case and so 

(9y d%9y') + 01 

(9y-&9y')\x=x+P2 

Then 

AF(y,r]) = fv 

Jv dxfy' Q 2 

__d_ 

dx 

(9y~ 

+ cti <?e 

dx 9y)\x=Xl+Pi 

(9y-£9y')\x=X2+P2 
(1.10.4) 
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Denoting 

we get from (1.10.4) 

\fy dxfy') I x=x 

{9y - ! « » ' ) \x=x 

AF{y,V) fv 
_d_ 
dx 

+ X(gy dx 9y' aei +o(\cr£l\) 

The first variation of the functional that must be zero on the solution is 

8F(y,ri) fy dx fy + ^[9v--E9V = 0. 

Since we can choose aSl arbitrarily, it follows that for any x\ G (a, b) we 
have 

fy dxfy + X [gy 
d 

dx" 
0. 

This means y = y(x) is an extremal of F + AG. • 
For an isoperimetric problem where the functional F depends on a vector 

function y = (yi,..., yn) and there are m restrictions of integral type Gi = 
J 9i{x,y,y')dx, i = 1,... ,k, there is a corresponding statement. For this 
problem a minimizer y is an extremal of the functional F + 2_,i=i ^kGi. 
The reader can derive the corresponding Euler equations. It is clearly 
impossible to satisfy k integral restrictions for y considering only the two-
belled increments, so here it is necessary to introduce increments composed 
of k + 1 bell-shaped functions. This necessitates additional technical work. 

Two problems 

Let us consider two special problems. The first was mentioned in § 1.1: find 
the plane curve enclosing the maximum possible area for a given perimeter. 
One approach is to examine all curves y(x) that, except for their endpoints, 
lie in the upper half of the xy-plane, and that have endpoints (±a, 0) and 
a given length I. (Note that a is not specified in advance.) In the notation 
of Theorem 1.10.1 we have 

F(y) f 
J —a 

ydx, G(y) fa y/r+W: 
J —a 

2 dx: 
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hence 

f(x, y, v') = y, sfc, y, y') = V1 + 0/)2> 

and f + Xg does not depend on x explicitly. So we can write 

v 1 + (y) 

which simplifies to 

Put 

-A 
y-ci 

V^ + iy')2' 

y' = - ^ = t a n « (1.10.5) 
ax 

where t is a parameter; then 

y ~ ci = —. = - = -Acost . (1.10.6) 
Vl + tan21 sect 

Now from (1.10.5) and (1.10.6) 

1 , 1 dy , 1 , • 
ax = ay = — at = A sin tat = A cos t ai 

t an i t an i di tani 

so that upon integration we have x = Asini + c-i- From the equations 

x — c-z = Asini, y — c\ = —Xcost, 

we may eliminate t to produce 

(x - c2)
2 + (y - Clf = A2. 

Thus all extremals of F(y) + XG(y) are portions of a circle. The conditions 

(-a - c2f + (0 - C l )
2 = A2, (a - c2)2 + (0 - cxf = A2, 

may be subtracted to show that c2 = 0. The vertical shift c\ of the center 
and the radius A clearly depend on the given I. Note, however, that we do 
not verify directly whether we have actually obtained the needed maximum. 
We leave this to the reader instead. 
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Another approach is to use polar coordinates. Calling these (r, <j>) and 
placing the coordinate origin inside the desired closed curve r = r(</>), we 
have 

/ + Xg = \r2 + Xy/r2 + (r ')2 

and the corresponding Euler equation 

Xr d Xr' _ 

^r2 + (r/)2 ~dj>^/r2 + {r'f ~ 

Performing the differentiation and simplifying we obtain 

1 _ rr" - 2(r')2 - r2 

A ~ [r2 + (r')2]3/2 ' 

which shows that the curvature of r{(j>) is a constant 1/A and gives us a 
circle again. 

It is worth noting that we formulated the problems for a minimum but 
solved for a maximum. This is analogous to the standard calculus trick of 
maximizing a function / by minimizing —/. Of even more interest is the 
idea of obtaining a dual problem by reversing the roles of the functional F 
and G. For example, the maximum area that can be enclosed by a curve 
having length I is l2/4ir. The dual problem is to find a closed curve of 
minimum length that borders a flat domain with area I2/Air. Of course, 
the solution is a circle having circumference I. 

We now turn to another classical isoperimetric problem. Early in the 
development of mathematics people became curious about the precise form 
assumed by a chain hanging from both ends (such chains were used, for 
instance, as "fences" along the sides of bridges). This is a hard problem if 
one wishes to consider it in full detail (including friction, nonuniformities in 
the individual links, and so on); it is possible to show that many peculiarities 
arise, and even the full setup of the problem is quite cumbersome. A 
successful approach depended on the construction of a tractable model for 
the chain. First an ideal chain was introduced, consisting of extremely small 
elements that were all identical; this permitted the tools of calculus to be 
applied. An even simpler model was a uniform filamentary rope — heavy, 
flexible, and absolutely unstretchable. Unlike a chain, such an idealized 
rope could lie in a plane. 

Let us therefore suppose that a uniform, flexible rope of a given fixed 
length hangs in equilibrium with its ends attached to two fixed points: 
what is the shape assumed by the rope? Denote by I the length of the 
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rope, assume it has a unit mass density, and let the endpoints be (a, ha) 
and (b, hb). (Clearly we need b — a < I.) The y coordinate of the center of 
gravity is proportional to the integral J y(s) ds where s is arc length along 
the rope; since the center of gravity will find the lowest possible position, 
we are led to minimize the functional (ds = y/l + (y')2 dx) 

rb . 
F(y) = / y^l + (y')2dx 

J a 
subject to the side condition 

G(y) = / ^l + (y>)2dx = I. 
J a 

Accordingly we minimize 

F(y) + XG(y) = f (y + \)^/l + {y'Ydx. 
J a 

Since the integrand does not depend on x explicitly, we write out the first 
integral of the differential equation, \ 

<» + A ) v ' T T W - « ! = = • , 
v1 + (y) 

and then simplify to obtain 

y + \ = ClyfiTW?. 

We find a parametric representation of the solution, introducing a param
eter t by the substitution y' — sinh t. Then 

y + X = ci cosht 

and we have, for the dependence of x on t, 

dx = -—— dy = -— — dt = -r-,— (ci sinh t) dt = c\dt 
smht smhi dt smht 

so that 

x — C2 = C\t. 

Finally, eliminating t we find 
' x - C2 

y + A = c\ cosh 
C\ 
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the equation of a catenary. The given conditions can be used to determine 
Ci, C2, and A. (Of course c^ = 0 if b = —a.) 

Once again we do not provide formal verification that a minimum has 
actually been obtained. Indeed, with many problems that arise from geom
etry or physics it is intuitively clear whether we have the desired solution. 
For the hanging chain problem, we can assert on physical grounds that a 
solution exists; since the solution we obtained is unique, we can rest assured 
that it is the desired one. 

It is possible to state other types of minimum problems with restrictions 
which, for their solution, require a technique similar to that of Lagrange 
multipliers. For example, it is possible to pose a problem of minimizing 
the functional J 1 f(x, y, z, y', z') dx under some boundary conditions when 
there is a restriction g(x, y,z) = 0 (in more advanced books this is called 
minimizing a functional on a manifold). Here a minimizer is an extremal 
of a functional J [/ — X(x)g] dx without integral restrictions imposed by 
g, and A(x) is a new unknown function that is treated as given when we 
compose the Euler equations. Of course to define it one must use the 
equation g(x, y, z) — 0. Some problems in mechanics involve restrictions of 
even more general type; e.g., g(x, y, z, y', z') = 0. 

Quick summary 

We have concentrated on an isoperimetric problem of the following general 
form: find the minimizer of the simplest integral functional from among 
those functions y that satisfy 

y(a) = c0, y(b)=ci, G(y) = / g{x,y,y')dx = I 
J a 

where G(y) and I are given. A solution method is to introduce a real number 
A (analogous to a Lagrange multiplier) and seek to minimize the functional 
F + XG subject to the given endpoint conditions on y. 

1.11 General Form of the First Variation 

We would like to consider the minimization problem for functional of the 
form (1.2.1) when the endpoints of integration can change. 

We have seen for various functionals that at a point of minimum the first 
variation is zero. Let us demonstrate this in general. First let us introduce 
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some notions. In subsequent chapters we shall use the notion of a normed 
space; now we introduce only the definition. A normed space is a linear 
space of elements x such that for each x a function called the norm ||x|| is 
defined. The norm must possess the following three properties: 

(i) for any x, \\x\\ > 0; ||ir|| = 0 if and only if x = 0; 
(ii) ||A:r|| = |A| ||a;|| for any real number A; 

(iii) ||z + y | | < | M | + | | j / | | . 

The third property is called the triangle inequality. For example, the norm 
(1.2.5) for functions in C^\a,b) satisfies the above properties. 

We can define a functional on a general normed space. A functional on 
a normed space X is a function that takes values in E; i.e., to any x G X 
there corresponds no more than one real number. We call a functional $(x) 
linear if for any x, y belonging to its domain and any real A, fi, 

3>(\x + ny) = \$>(x) + /J,$(y). 

Finally, a linear functional $>(x) is continuous in X if there is a constant c 
such that for any x G X, 

|$(x)| < c||a;|| . 

The infimum of all such c is called the norm of $ and is denoted | |$ | | (it is 
actually a norm according to the norm properties listed above). 

Let F(x) be a functional on X, and assume that in some ball about a 
point x G X (a ball is a set of elements x + 5x G X, where 5x £ X, such 
that ||&r|| < E for some e > 0) there is a representation 

F(x + 6x) - F{x) = 5F{x, 5x) + o(\\Sx\\) (1.11.1) 

where 5F(x,Sx) is a linear functional continuous in 8x. We have called 
it the first variation of F(x), but it also has another name: the Frechet 
differential of F(x) at x. Hence we have extended the definition of the first 
variation to abstract functionals. 

Let a; be a local minimizer of F: that is, F(x + 5x) — F{x) > 0 for any 
||&c|| < e with some e > 0. 

Theorem 1.11.1 Let x be a minimizer of F on the set of elements {x + 
Sx | ||&E|| < e}, and suppose F has the first variation at x such that (1.11.1) 
holds on this set. Then 5F(x,Sx) = 0. 
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Proof. Suppose to the contrary there exists an x* £ X such that 
SF(x, x*) ^ 0. Then for small enough t we have 

0 < F(x + tx") - F(x) = SF(x, tx*) + o(t \\x* ||) = tSF(x, x*) + o(t). 

For small \t\ the difference on the left is determined by the first term on the 
right. Choosing an appropriate t we get tSF(x,x*) < 0, which contradicts 
the leftmost inequality. • 

Thus for a problem of minimum of a functional, as a first step, we have 
to derive its first variation, equate it to zero, and then find solutions of this 
equation for any admissible disturbances (or virtual variations) 5x. 

We return to the beginning of this section and claim again that we would 
like to consider a minimization problem for a more general functional than 
(1.2.1), i.e., the functional 

f ' f(x,y,y')dx (1.11.2) 
Jx0 

where the endpoints XQ and x\ can move. Thus we need the expression for 
the first variation in this case. To realize the above idea we must suppose 
that all changes are of the same order of smallness. Here we have not only a 
change ip in y to consider, but also changes 5x$ and 5x\ of the ends XQ and 
x\ respectively. Since SXQ and 5xi are arbitrary and we could have Sxo < 0 
or 5xi > 0, we must agree on a way of extending a given function to points 
outside the segment [xo,a;i]. We do this by linear extrapolation, using the 
tangent lines to y = y(x) at xo and x\ to define the values of the extension. 
The ends of the extended curve have coordinates (xo + 5x0,yQ + 5y0) and 
(xi +5x%,yi +Syi). 

Our problem is to derive the linear part of the increment for (1.11.2) 
when (p, <p', SXQ, Syo, Sxi, and 5y\ have the same order of smallness; that is, 
to extract the part of the increment that is linear in each of these quantities. 
Denote 

e = IMICCD(XO,ZI) + lfa°l + l^ol + l f a l l + l^l-

The increment is 

AF(y)= f(x,y + ip,y'+ <p')dx- / f(x,y,y')dx. 
Jxo+Sxo •> xo 
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The first integral can be decomposed as 

i+5x\ px\ px\+8x\ 

• •) dx. 

pXi+OXi Ml rll+OIl rXo + OXo 

/ (•••)dx = (•••)dx + (• • • ) dx - / ( 
J Xo+5xo J XQ J x\ J XQ 

We recall that all the functions y = y{x), </? = (p(x), are linearly extrapo
lated outside [:EO,£I], preserving continuity of the functions and their first 
derivatives. Thus 

AF(y) = / '[f(x,y + <p,y' + ip') - f{x,y,y')} dx 
JXo 

rXi+Sxi 

+ / f(x,y + if,y' + ip')dx 

- / f(x,y + <p,y' + tp')dx. (1.11.3) 
J Xn 

The integral over [xo, x{[ can be transformed in the usual manner so we use 
the formula we obtained before: 

/ [f(x,y + <p,y' + <p') - f(x,y,y')]dx 
Jxn 

F 
•> Xn 

fy(x,y,y') - —fy,(x,y,y') 

+ fy'(x,y{x),y'{x))ip(x) 

tpdx 

o(e). 

Let us represent <p at the endpoints using Syo and 5y±. From Fig. 1.2 we 

I , X^ftXy 

Fig. 1.2 Quantities appearing in equations (1.11.4) and (1.11.5). 
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see that 

<f(xi) = Syi ~ y'ix^Sx! + o(e). 

We have a similar relation at XQ\ 

<p(x0) = Sy0 - y'(x0)5x0 + o(e). 

Thus 

/ [f(x,y + f,y'+ ip')-f(x,y,y')]dx 
J Xn 

(1.11.4) 

(1.11.5) 

Jxa 
fy{x,y,y') - -j^fy<(x,y,y') ipdx 

+ fy'{x\,y{xi),2/'(ari))«52/i - fy'(x0,y(x0),y'(xQ))Sy0 

- [fy'ixi^ix^^'ixx^y'ix^Sxi 

- fy'(xo, y(x0), y'(x0))y'(x0)8x0] 

+ o(e). 

Now let us consider the two other terms for AF in (1.11.3). Extracting the 
terms of the first order of smallness in e we have 

fXi+5xi rxi+Sxi 
j f(x,y + ip,y' + ip')dx= f(x,y,y')dx +o(e) 

J X\ JX\ 

= f{xi,y(x±),yl{xi))5xl + o{e) 

and similarly 

(•XQ+SXQ nXo-roXQ 

/ f(x, y + ip, y' + <p') dx = f(x0, y{x0), y'{x0))5x0 + o(e). 
J xn 

Collecting terms we have 

A F 
J Xn 

d 
fy(x,y,y')~ —fy>(x,y,y') (pdx 

+ fy'{xi,y{xi),y'(xl))8y1 - fy>(x0,y{x0),y'(x0))Sy0 

+ [f{xi,y(xi),y'(xi)) - fy>{xi,y(x{),y'(xi))y'{xi^Sxx 

- lf(x0,y(x0),y'{x0)) - fy'(xo,y(xo),y'(x0))y'(xo)}6x0 

+ o(e). 
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Thus we have derived the general form of the first variation of the functional 
when the ends of the curve can move: 

5F I" ('• dx' fv, <pdx + fy,5y + (f-y'fy)Sx (1.11.6) 

The reader can demonstrate that for a functional F(y) = 
JXl f(x,y,y')dx with movable boundaries the general form the first varia
tion is 

5F 
n fXl ( d \ n Xl ( v^ \ 

51 / if**' TJv'i fidx + Yjfy'M + f -zly'ify'i 5x 

i = 1 Jxo \ OX / . = 1 Xo y . = 1 J 

1.12 Movable Ends of Extremals 

In the previous section we found the general form (1.11.6) of the first vari
ation of a functional when the boundaries of integration can move. Note 
that when the boundaries are fixed then Sxi = 0 and (1.11.6) reduces to the 
left-hand side of (1.5.2). Thus in this case the equation 5F = 0 for a min-
imizer gives us the Euler equation and natural boundary conditions. The 
problem with natural boundary conditions can be reformulated as follows: 
given two vertical lines x = a and x = b, find a minimizer of the functional 
(1.2.1) that starts on the line x = a and ends on the line x = b (or that 
connects these lines). 

This formulation suggests that by using (1.11.6) it is possible to find 
equations to solve the following problem. Given two curves y = tpo(x) and 
y = il>i(x), find a minimizer of (1.2.1) that starts on ipo{x) and ends on 
ipi(x). Let us call this the "problem with movable boundaries." 

We assume any other functions of interest are defined (and twice contin
uously differentiable) wherever the boundary functions tp^x) are given. (If 
these latter functions are not defined on the same interval, we construct an 
interval that encompasses all points of interest and assume that everything 
is defined on this larger interval.) Moreover we assume the endpoints of the 
minimizer are not endpoints of the graph for the ipi(x). 

So we start with 

5F = (fy - —}yl ) <pdx + fy,5yi 
dx" 

+ (f-y'fy>)5xi 
xo,i=0 

(1.12.1) 
We know that for admissible increments <p of a minimizer y = y(x) the first 
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y = ^i(x) 

Fig. 1.3 Quantities near movable end of an extremal. 

variation of the functional is equal to zero. Although the expression SF 
above contains all the terms of the increment of the first order of smallness, 
it is not the first variation in the present case. Admissible <p now are those 
that are continuously differentiable and such that both 

(x0, y(x0)) and (x0 + 8x0, y(x0 + 8x0) + <p{x0 + 5x0)) 

belong to the curve y — tpo(x), and both 

(xi,y(xi)) and (xi+5xi,y(xi+6xi)+ <j>(x\ + 5xi)) 

belong to the curve y = I/JI(X)-

Consider Fig. 1.3. Here each Syt (i = 0 or 1) and its corresponding Sxt 
are no longer independent; it is clear that for small Sxi we have 

&Vi = i>'i(xi)8xi + Ei, i = 0,l 

where the e% are of a higher order of smallness than 8xi and Syi. Substi
tuting this into the right-hand side of (1.12.1), we select only the terms of 
the first order of smallness and get 

f fy- —fy,)ipdX + fy'lp'iSXi 
Xi,i=l 

+ (f-v'fy)8xi 
xo,i=0 

xi,i=l 

XQ,i=0 

This is the first variation of the functional (note that it is equal to SF in 
(1.12.1) only up to terms of the first order of smallness in the norm of the 



80 Calculus of Variations and Functional Analysis 

increment). Thus 

/•xi 

/ [fy~ 7~fy') tpdx +fy'^Sxi + {f - y'fy>) Sxi 
Jx0 V ax J xo , i=0 

= 0 
xo,i=0 

(1.12.2) 
for all admissible <p. 

Let us derive the consequences of this equation. First, from among 
the admissible increments y = f{x) we take only those which satisfy the 
conditions tp(xo) — <p(xi) = 0. For any such <p we have 

/ 

Xl / d 
fy~ ~^fy' }<pdx = 0 

and thus by the fundamental lemma the Euler equation fy—^fy' = 0 is ful
filled on (xo^i ) - Hence the integral in (1.12.2) vanishes for any admissible 
<p, and it follows that 

( / + ( $ - y ' ) / y ) & * 
xi,i=l 

= 0. (1.12.3) 
xo,i=0 

It is clear that we can "move" the ends of the curve independently, so 
(1.12.3) implies two boundary conditions for the minimizer: 

(/ + M-y ,)/„')L1=o, (f + Wo-v')fv)\xo = o- (1-12-4) 

For the problem under consideration the minimizing curve y = y(x) 
satisfies conditions (1.12.4) which are an extension of the natural boundary 
conditions. The way in which the minimizer intersects the boundary curves 
y = tpi(x) has a special name: we say that the curve y = y{x) is transversal 
to the curves y = tpi(x), i = 0,1. 

Let us analyze the setting of the boundary value problem in this case. 
There is the Euler equation whose solution is determined up to two un
known constants (it is not always so; in nonlinear equations the situation 
with constants is sometimes much more complex, but when we analyze the 
problem qualitatively we keep in mind the terms of the linear case). The 
two conditions (1.12.4) could define those constants, but they contain un
known quantities £0 and x\ so we need to find two more equations. They 
are y(xo) = V^C^o) and y(x\) = ^ I ^ I ) , and thus the setup of the necessary 
conditions for y = y(x) to be a minimizer is completed. 
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Example 1.12.1 Show that for functionals of the form 

/ ' q(x,y)^/l + (y')2dx 

where q(x,y) 7̂  0 at the endpoints x$ and x\, conditions (1.12.4) imply 
orthogonal intersections between y(x) and the curves ipo(x) and ipi(x) a t 
the points XQ and x\, respectively. 

Solution Take, for example, the condition ( / + (ip[ — y')fy') \ = 0. 
Direct substitution and a bit of simplification give 

(q(x,y) ) + M ) =0. 

If q(x, y)\Xl # 0, then (1 + Vi2/')k = 0; i.e., 

Vlxi~ Vil-x" 

Since the slopes are negative reciprocals, y is orthogonal to tp\ at x = x\. 

Quick review 

The problem with movable boundaries for the simplest integral functional 
involves finding a minimizer that connects two given curves y = tpo (x) and 
y = ipi(x). We first solve the Euler equation, obtaining a solution in terms 
of two unknown constants. We then impose the transversality conditions 

(/ + M - y')fy) U =0- (/ + ($. - v')fy) L0 = 0; 

here x\ and XQ are also unknowns. After imposing y(xo) = V(xo) a n d 
y{x\) = ip(xi), all constants should be determined. 

Special cases: (1) If one of the ipi is a horizontal line, say ipi(x) = 
constant, then ip[ = 0 and the corresponding transversality condition be
comes 

(/-!/'/„') U=0 . 

If ipi is a vertical line (x = constant) then fyi | = 0. 
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1.13 Weierstrass—Erdmann Conditions and Related Prob
lems 

We have required a minimizer y = y(x) of (1.2.1) to assume given values 
at the endpoints of [a, b]. Is it possible to retain these conditions and 
also require that y(x) assume a third given value at an interior point of 
[a, 6]? That is, can we impose three conditions of the form y(a) — CQ, 
y(p) = d , and y(a) = c2 where a G (a, 6)? If we require the minimizer to 
be in C^(a,b), then the answer is, in general, negative: a solution of the 
second-order Euler equation cannot be made to satisfy three conditions at 
once. If we omit the condition of continuity of the minimizer at x — a, the 
problem can be solvable in principle. However, in this case we can consider 
two separate problems of minimizing two functionals, one of which is given 
on [a,a] and the other on [a,b]. So in this case we reduce the three-point 
problem to the two-point problem already considered. 

With some problems it is sensible to assume that a minimizing curve 
has a finite number of points at which continuity of its derivative fails. We 
cannot appoint the position of such points on (o, b) in advance. It happens 
that at such points the Weierstrass-Erdmann conditions must be fulfilled. 
Let us derive these, assuming the existence of one point of discontinuity of 
the first derivative of the minimizer. They will hold at every such point. 

Suppose x = a is a point at which the first derivative of a minimizer is 
not continuous. 

Theorem 1.13.1 Let x = a G {a,b) be a point at which the tangent to a 
minimizer y = y(x) of the functional j f(x,y,y') dx has a break. Then y 
satisfies the Euler equation on the intervals (a, a) and (a,b), and at x = a 
the Weierstrass-Erdmann conditions 

fv' L=a-o = fy' L=Q+O (1.13.1) 

and 

(f-y'fy>)l=a-« = (f-y'fy')l=a+0 (1-13.2) 

hold. 

Before giving the proof, let us discuss how to state the corresponding 
boundary value problem. On each of the intervals (a, a) and (a, b) the 
minimizer satisfies the Euler equation. So in general the minimizer is de
termined up to four unknown constants. Also unknown is a. There are five 
conditions to determine these constants: the two boundary conditions at a 
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and b, the conditions (1.13.1) and (1.13.2), and the condition of continuity 
y(a — 0) = y(a + 0). Thus in principle the boundary value problem is 
formulated properly. 

Proof. Let us consider for definiteness the boundary conditions y(a) = 
Co, y(b) — c\, for a minimizer. We require the minimizer to be continuous 
at x = a. Perturbing the minimizer by an admissible <p and supposing 
that the point (a,y(a)) gets the increments (Sx,Sy), we should apply the 
general formula for the first variation 

/ " ( 
J x0 \ 

fy- -^fy' ) <pdx + fy,5y + (f-v'fv>)5x (1.13.3) 

twice, on each of intervals (a, a) and (a, b) separately, taking into account 
that the increment (6x, 5y) at (a, y{a)) is the same on the left and the right 
of a. Remembering that 5x and Sy are zero at x = a and x = b for all 
admissible increments, we have 

SF = 5[f f(x,y,y')dx + J f(x,y,y')dx) 

-a fy~ fafy' ) ¥>dx + fy,8y + (f-v'fy>)6x 
x=a—0 

+ IV ^ ipdx - fy>5y (f-y'fv)Sx 
x=a+0 x = a + 0 

Thus for all admissible increments 

L {fy-^')ipdx+L{fv~^fv')tpdx 

+ 

+ 

w 

( / 

- fy' 
x=a—0 

-y'fv) 
x=a 

cc=a+0 

- ( / 
- 0 

5y 

- v'fy) 
X=Q + 0 

5a; = 0. (1.13.4) 

Now we choose certain classes of admissible increments <p to show that 
each term summed in (1.13.4) is equal to zero separately. Let us take first 
those admissible ip that are zero on [a, b]. Also take 5x = 5y = 0. All terms 
except the first integral on the left are equal to zero identically now. Thus 

£('•-=*) fv"fafv' )(fdx = 0 
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for all differentiable functions ip that equal zero at a and a. By the funda
mental lemma we see that the Euler equation fy — ̂ fy' = 0 holds on (a, a). 
Because of this the first integral is zero not only for those ip that satisfy 
<p(a) — 0, but for all admissible increments. A similar choice of those ip 
that are zero on [a, a] together with the assumption 6x = 6y = 0 brings 
us to similar conclusions: the minimizer y satisfies the Euler equation on 
(a, b) and so for all admissible ip we have 

fy 
d 

dx" 
fy> \ip dx = 0. 

It follows that 

fy 
x=a—0 x=a+0 

Sy 

U-v'fy) (f-y'fy) 
x=a — 0 x—a+0 

5x = 0 

for all admissible 8x and 5y, hence we obtain (1.13.1) and (1.13.2). D 

In the case of the functional f f(x,y,y')dx depending on a vector 
function, at a discontinuity of a component yi we have the similar conditions 

fy'i\x=a-o ~ fy'i\x= Q+0' (/ - yify'i)\x=a_0 = ( / - VifvO\x=a. +0' 

Indeed, when deriving the corresponding equation for the first variation of 
the functional, we can appoint the increments of all the components except 
yi to be zero, so formally the corresponding equation does not differ from 
(1.13.4). 

The Weierstrass-Erdmann conditions are similar in form to the natural 
conditions for a functional. Using the idea of the proof of Theorem 1.13.1 
we can find similar boundary conditions for other types of problems. 

Example 1.13.1 Let us consider the problem of minimization of the 
functional 

I f(x,y,y')dx+ / g(x,y,y')dx (1.13.5) 
Ja Jp 

where j3 is a fixed point of (a, b), and y is continuous on [a, b], twice con
tinuously differentiable on (a,/3) and (P,b), and satisfies y(a) = CQ and 
2/(6) = c\. We assume the integrand is discontinuous at x — /?, hence y has 
no continuous derivative there. 
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Solution Problems of this form are frequent in physics, arising from spa
tial discontinuities. A specific instance of this is when a ray of light crosses 
the interface between two media. We are interested in how to appoint the 
conditions at such points, since the equation of propagation is not valid 
there. Variational tools can often supply us with such conditions. Let us 
demonstrate how this can happen. 

For the functional (1.13.5) we need to derive the expression for the first 
variation and put it equal to zero for admissible increment-functions. For 
this we use (1.13.3) as above, but should take into account that /? is fixed 
so that Sx = 0 at x = /?. The changes are evident: 

/ (fv-Txfy)*dx + !0 {9»-Tx9*)*dx 

+ fy ~9y' 
x=/3-0 x=/3+0 

5y = 0. 

Thus in a similar fashion at x = /?, in addition to the continuity condition 
y(fi - 0) = y[fi + 0) we get 

fy 
x=P-0 

= 9y 
x=/3+0 

Let us now consider a particular problem of the same nature with an
other type of functional. We need to determine the deflections under trans
verse load q(x) of a system consisting of a cantilever beam with parameters 
E and / and whose free end connects with a string as shown in Fig. 1.4. 

The models of a string and of a beam are of different natures; they are 

/ 
/ 
/ 
/ 

y 

i M n n ' 

*(*) 

L 

\ 
\ 
\ 
\ 
\ 

5 x 

Fig. 1.4 A coupled mechanical system consisting of a beam and a string. 
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derived under different sets of assumptions, and the corresponding ordinary 
differential equations have different orders. It is clear that at the point of 
connection the function y describing the deflections must be continuous. 
However, we can imagine that the angles of inclination of the beam and the 
string can differ under certain loads; this means that we cannot require y' 
to be continuous at the point of coupling. What are the other conditions 
at this point? There are two ways to find them. One is to undertake 
a careful study of the theory of beams and strings and, understanding 
the mechanical meaning of each derivative at the point, to write out the 
conditions of equilibrium of the node (coupling unit). Another is to employ 
variational tools. Normally the latter is preferable, as it is less likely to 
yield incorrect conditions. We begin with the expression for total potential 
energy of the system: beam-string-load. We take the lengths of the beam 
and the string to be 1 m and 5 m, respectively. The stretching of the string 
is characterized by a parameter o: 

E(y) = i jf1 EI{y"{x)f dx + \ j\y\x)f dx - j " q(x)y(x) dx. 

We see from the figure that 

2/(0) = 0, 3/(0) = 0, j/(6) = 0. 

Using tools from the first sections of the book, we obtain the first vari
ation 

p\ pQ /*6 

5E - EIy"ip" dx + a y'ip' dx - q(x)(p(x) dx 
Jo Ji Jo 

of the energy functional. For all admissible functions that necessarily satisfy 
ip(0) = 0, tp'(0) = 0, and tp(6) = 0, we have 

6E = 0. 

Integrating by parts we obtain 

- EIy"'ip 
x = l - 0 x = l - 0 

f EIy{A)ipdx + EIy"p' 
Jo 

p6 pi /*6 

— a I y"ipdx — ay'ip — I qtpdx— q(pdx = 0. 
Ji x=i+o Jo Ji 

We now reason as we did in the proof of Theorem 1.13.1. Putting <p = 0 
on [1,6] and the "boundary" values ip(l — 0) and <//(! - 0) equal to zero, 
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we get 

ElyW -q = 0 on (0,1) 

for the beam equation; similarly, we get 

ay" + q = 0 on (1,6) 

for the string equation. Hence we deduce two additional boundary condi
tions at the point of connection: 

W ' U _ 0 = - i / ' U + o (1-13-6) 

and 

£ V ' U _ o = 0. (1.13.7) 

Condition (1.13.6) means that at the connection point the shear force of 
the beam is contracted by the force produced by the projection onto the 
vertical direction of the stretching force produced by the string, whereas 
(1.13.7) shows that the string cannot resist a torque so the moment at this 
point of the beam is zero. 

Such constructions consisting of elements of different natures are com
mon in practice, and now the reader knows how to set up the corresponding 
boundary value problems. 

Quick review 

In some problems it becomes necessary to extend the class of admissible 
functions to include those that are piecewise smooth. Let y(x) be a min-
imizer of the simplest integral functional, and suppose y'(x) is continuous 
on the closed intervals [a, a] and [a, b] where a £ (a, b) is the sole corner 
point. The position of a cannot be determined in advance, but is subject 
to the Weierstrass-Erdmann conditions 

fv'\x=a-0 = fv'\x=a+0> \f ~ V fv')\x=a-0 = (f ~ V h')\x=a+a-

In addition to the Euler equation on the intervals (a, a) and (a, b) then, 
y must satisfy (1) the Weierstrass-Erdmann conditions, (2) any given 
endpoint conditions on y(a) and y(b), and (3) the continuity condition 
y(a — 0) = y(a + 0). A piecewise smooth extremal with a corner (or with 
multiple corners) is called a broken extremal. 
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1.14 Sufficient Conditions for Minimum 

Thus far we have studied some of the techniques used to identify possi
ble minimizers. It is also of interest to know how to solve the boundary 
value problems that yield corresponding extremals, although the treatment 
of this topic falls outside the scope of this book (and within the scope of 
books on ordinary and partial differential equations). But the solutions of 
these problems represent only the first step in a full solution of the problem 
of minimization; the next step is to learn whether an extremal is a mini-
mizer. As we shall see, for many linear problems of mathematical physics 
an extremal satisfying boundary conditions is automatically a minimizer. 
Nonlinear problems, as a rule, need additional investigation. For this we 
need to derive sufficient conditions for an extremal to be a minimizer. First 
we shall derive conditions analogous to those found in the calculus of func
tions of many variables. 

We reconsider the problem of minimum of the simplest functional 
F{y) = I f(xiy:y')dx in the class C^(a,b) under the boundary con
ditions y(a) — Co, y(b) = c\. Let y be a minimizer of the problem under 
consideration and let Ay(x) be an admissible increment of y. Consider the 
increment of F: 

AF = F(y + Ay) - F{y) 
b 

[/Or, y + Ay, y' + Ay') - f(x, y, y')} dx. (1.14.1) 

Denote p = y(x), q = y'(x), and g(p,q) = f{x,p,q), and let Ap and Aq 
be the increments of p and q, respectively (in this case they are tp(x) and 
<p'(x) in our old notation). If in some small neighborhood of the point (p, q) 
the function g has all continuous derivatives up to the second order, then 
in this neighborhood we can write the Taylor expansion of g: 

g(p + Ap,q + Aq) = g(p, q) + [gp{p, q)Ap + gq(p, q)Aq] 

+ y[9PP(p, <7)(Ap)2 + 2gpq(p, q)ApAq 

+ gqq(p, q)(Aq)2] + p(p, q, Ap, Aq) [(Ap)2 + (Aq)2] 

where /3(p, q, Ap, Aq) —> 0 when (Ap)2 + (Ag)2 —» 0. We can write out this 

- / 
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expansion in terms of / , y, and Ay at each x € \a,b}: 

f(x, y + Ay, y' + Ay') = f(x, y, y') + [fy(x, y, y')Ay + fy,(x, y, y')Ay'} 

(x, y, y')(Ay)2 + 2/„„/ (x, y, y')AyAy' 

+ fy>y>(x, y, y')(Ay')2} + p(x, y, y', Ay, Ay')[(Ay)2 + (Ay')2} 
(1.14.2) 

(we keep the same notation (3 for the remainder function). Let us assume 
that for all x € [a, b] we have 

\(3(x,y,y',Ay,Ay')\<a(Ay,Ay') 

where a(Ay, Ay') —* 0 when (Ay)2 + (Ay1)2 —> 0. This is an important 
assumption in what follows. 

Let us return to our old notation ip = Ay and rewrite (1.14.2) as 

+ -ilfyyiX'V'y')1?2 + 2 /W ' ( a : >y ,2 /W 

f(x, y + ip,y' + p') = f(x, y, y') + [fy(x, y, y')p + fy, (x, y, y')p'} 

1 

2!' 
+ fyy (z, y, y'Wf] + < V + (p')2). (1.14.3) 

Here o(p2 + (p1)2) indicates that the term which is uniform in x is small 
in comparison with ip2 + (ip')2- We now apply the expansion (1.14.3) to 
(1.14.1): 

AF = / [fy(x,y,y')<p + fy'{x,y,y')<p']dx 
J a 

+ 7T, l [fyy(x,y,y')^p2 + 2fyy^(x,y,y')p(p' + fyV(x,y,y')(p')2]dx 

+ o(j\tp2 + (p')2)dx). 

Since y is a minimizer of the problem we necessarily have 

6 

[fy(x, y , y')f + fy> (x, y , y')v'\ dx = o 

(cf., § 1.1) and thus 

AF = F(y + p)-F(y) = 5zF + o\ / (p' + (p'Y)dx L{ip2+{ip,? 
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where 52F is the second variation defined by 

1 fb 

52p=Y\ / [/w^'^y'V2 + 2fyy'(x,y,y')<pp' + fy'V'{x,y,y'){v')2]dx. 
Ja Integration by parts gives 

rb 

2fyy/{x,y,y')cpip' dx = / fyy,(x,y,y')—<p2 dx 

f 
Ja 

b j 

v2-fafw'(x' y(x),y'ix)) dx 

since ip(a) = (p(b) = 0. Then 

62p=y { fyy(x>v>y') - ^ / w ' ^ . y . y ' ) <p2+fV'y'(x,y,y'W)2\dx. 

The quantity S2F is quadratic in if and <p'. Suppose it is bounded from 
below as follows: 

, 6 

S2F>m (<p2 + (tp')2) dx, (1.14.4) 
J O 

where the constant m > 0 does not depend on the choice of admissible 
increment <p (note that here we do not need assumptions on the smallness 
of ip). It then follows that 

F(y + tp)- F(y) > 0 

for all admissible increments (p (i.e., (p € CQ (a,b)) with sufficiently small 
norm |M|C(iwa by This means that (1.14.4) is sufficient for y to be a local 
minimizer of the problem under consideration. 

Thus we need to find conditions for (1.14.4) to hold. Let us denote 

A. 
dx" 

P(x) = fy'y'{x,y{x),y'(x))-

Q(x) = fyy(x,y(x),y'(x)) - — fyy>{x,y{x),y'{x)), 

The functions Q(x) and P(x) can be regarded as momentarily given when 
we study whether y = y(x) is a minimizer. So we need to study the func
tional 

rb 

* ( ? ) = / [P(x)<p'2{x)+Q(x)<p2(x)]dx 
Ja 

in the space C$ (a, b). 
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It is easy to formulate the following restrictions: 

P(x) > c and Q(x) > c > 0 for all x e [a,b]. 

Under these the inequality (1.14.4) holds for all <p € CQ (a,b). Unfor
tunately these restrictions fail in many cases when y = y(x) is really a 
minimizer, so we need to derive more useful conditions. 

Note that if y = y(x) is a minimizer then $(tp) > 0 at least. For if there 
were an admissible increment ip such that $(y>) < 0 then we could find a to 
so small that for all 0 < i < to we would have F(y + tip) — F(y) < 0, and y 
would not be a minimizer. Let us suppose $(</>) is non-negative. 

Theorem 1.14.1 Let P(x) and Q(x) be continuous on [a, b] and $(</?) > 
0 for all <p G C^\a, b). Then P(x) > 0 on [a, b}. 

Proof. Suppose to the contrary that P(xo) < 0 for some xo. Then 
P(x) < 7 < 0 in some e-neighborhood [XQ — e,xo + e] of XQ. Choose 
ip(x) € C^l\a,b) as the particular function 

(p{x) = sin 
it(x-x0) x £ [XQ - e,xo + e], 

otherwise. 

Then for x 6 [XQ — e, xo + e] we have 

<p'(x) = 2 sin 

and therefore 

7r(x - X0) 
cos 

ir(x - x0) / 7 T \ 7T . 2TT(X — XQ) 

V £ / Jx0-e 

+ / Q(x)sm 
J xa — e 

dx 

TT(X - Xo) 

But 

rXQ+e 

j 
Jxn-e 

P(x) sin2 

'xo—e 

and 

2ir(x — XQ) rxo+e 

dx < 7 / sin2 

Jxo — e 

rxo-te 
/ Q{x)i 

J xn—e I XQ—£ 

n(x - XQ) F 
J i n 

•Xo+£ 

dx < M I sin4 

'xo—s 

2n(x — £0) 

TT(X - XQ) 

dx = 75 

dx 
3Me 
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where M = ma,xx€[ai,] |<3(x)|- Hence 

$(„)<(-) ie+-r = ~ + —• 
Recall that 7 < 0; for sufficiently small e we can make 3>(y>) < 0, a contra
diction. • 

Thus, besides the Euler equation we have established another necessary 
condition for y to be a minimizer of the problem under consideration: we 
must have 

fy'y'{x,y{x),y'(x)) > 0 for all x G [a,b]. 

This is Legendre's condition. 
Legendre believed that satisfaction of the strict inequality fyiy> > 0 

for all x G [a, b] should be sufficient for y to be a minimizer, and even 
constructed a flawed proof. However, even the mistakes of great persons 
are useful — on the basis of this "proof a useful sufficient condition was 
subsequently established. Jacobi proposed to study the functional $(</?) 
using the tools of the calculus of variations itself. The Euler equation for 
this functional is 

[P(x)<p'(x)]' - Q{x)<p(x) = 0. (1.14.5) 

It is clear that this equation has the trivial solution ip = 0. Let P(x) be 
continuously differentiable. Jacobi studied the zeros of a solution of (1.14.5) 
for the Cauchy problem <p(0) = 0, <p'(0) = 1. The nearest value XQ > a 
where <p(xo) = 0 he called the point conjugate to a (with respect to the 
functional $(</?)). This point is denoted a* (we agree to call a* = 00 if <p(x) 
has no zeros to the right of x = a). Jacobi established another necessary 
condition for y to be a minimizer: that the interval (a, b) does not contain 
a*. 

The following set of three conditions is sufficient for y to be a minimizer 
of the problem under consideration: 

(1) y satisfies the Euler equation fy — ^ / y ' = 0 ; 
(2) fy>y'{x,y{x),y'(x)) > 0 for all x e [a,b]; 
(3) [a, b] does not contain points conjugate to a with respect to $(y>). 

We shall not offer a proof of this, but do wish to note the following. The 
result is beautiful, but for many years it seemed impractical: the Jacobi 
condition (3) was quite difficult to check before the advent of the computer. 
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Today, however, there are many good algorithms with which Cauchy prob
lems for ordinary differential equations may be solved. Hence it is quite 
easy to check the Jacobi condition numerically. 

Example 1.14.1 For which range of the constant c is an extremal of the 
functional 

f (y'2 - c2y2 - 2y) dx, y(0) = 0, y(l) = 1, 
Jo 

a minimizer? 

Solution The extremal exists, as the reader can verify. We suppose 
c > 0. 

Let us check the sufficiency conditions given above. Legendre's condition 
holds automatically. The Jacobi equation with initial conditions is 

y" + c2y = 0, 2/(0) = 0 , y'(0) = 1. 

Its solution is y = C1 sinca:, hence the conjugate point occurs where ex = 
n. Thus, by sufficient conditions, the extremal really is a minimizer of the 
functional when a* = TT/C > 1, and by symmetry in c, the extremal is a 
minimizer when \c\ < •K. When a* < 1, then extremal is not a minimizer 
and, moreover the functional has no minimizer at all (why?). 

Finally we note that the Jacobi theory of conjugate points and cor
responding results can be established for a functional depending on an 
unknown vector-function. 

Some field theory 

We now turn to a brief, introductory discussion of certain concepts needed 
to express conditions sufficient for a strong minimum. The main idea is 
that of a field of extremals. 

Let D be a domain in the rry-plane. Let 

y = y(x; a) 

be a family of curves lying in D, a separate curve being generated by each 
choice of the parameter a. If a unique curve from the family passes through 
each point of D, then we call the family a proper field in D. A proper 
field can be regarded as a sort of cover for D, associating with each point 
(x,y) S D a unique slope p(x,y) (i.e., the slope of the particular curve 
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passing through that point). As a simple but standard example, let D be 
the unit disk 

D = {(x,y):x2+y2<l} 

and let y = y(x; a) = kx + a where k is a fixed constant. Here we have a 
field of parallel straight lines with slopes p(x, y) = k. 

If all curves of a family y = y(x; a) pass through a certain point (XQ, yo), 
then the family is known as a pencil of curves and (XQ, yo) is called the center 
of the pencil. For example, the family y = ax is a pencil having center at 
the origin. Of course, a pencil of curves having center (xo,yo) £ D cannot 
be a proper field of curves in D. However, if a pencil of curves assigns a 
unique slope p(x,y) to all points in D other than (xo,yo), we speak of a 
central field of curves in D. 

A field of extremals is a family of extremal curves (for some variational 
problem) that generates a proper or central field in a domain D. The Euler 
equation for the simplest functional 

F(y)= f f(x,y,y')dx (1.14.6) 
J a 

has solutions that form a two-parameter family of curves y = y(x;a;f3). 
(Here a and f3 are the integration constants in the general solution of the 
Euler equation.) If one of the constants, say a, is determined by imposing 
a given fixed endpoint condition y(a) = CQ on the general solution, then all 
the extremals in the resulting one-parameter family will issue from the same 
point (o, Co). The resulting family y = y{x;(5) may be a field (proper or 
central) in some specified domain D. For example, consider the functional 

\y2-(y')2}dx 

with a = 0 and y(0) = 0. The integrand does not depend explicitly on x, 
so y2 — (y1)2 — (—2y')y' = c\. It follows that the extremals have the form 
y = C2sin(x + C3), which gives us a pencil having center (0,0). Another 
example we mention is for the functional 

[\y'2-lfdx. 
J a 

The extremals are straight lines. When suitably restricted, the two-
parameter family of curves y(x) = c\x + c<i can form a field in a couple 
of different ways: (1) when c\ is fixed, we obtain a family y = y(x; C2) that 

L 
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can form a proper field in the unit disk D; (2) when C2 = 0, the resulting 
pencil centered at the origin can form a central field in D. 

Let y = y(x; a) generate a field of extremals (central or proper) in some 
domain D. Each choice of a then gives an extremal; by setting a = ao, 
we select a particular extremal y*(x) = y(x;a0) from the field. If this 
extremal y*(x) has no common points with the boundary of D, it is said to 
be admissible in the field. We note that a given extremal may be admissible 
in more than one field covering a domain D. Returning to our example in 
which D is the unit circle, the two fields 

y(x;a) = c\x + a, y(x;a) = ax, 

mentioned above each admit the straight line extremal y*(x) = c\x. 
Armed with an understanding of the field concept, we proceed to the 

next step. Let D be a domain in which there is distributed a proper field 
of extremals for the simplest functional F(y) of equation (1.14.6). Suppose 
further that this field admits the particular extremal y = y* (x) satisfying 
given endpoint conditions y{a) — CQ, y{b) = c\. Now let y = y(x) be any 
curve that lies in D and connects the desired endpoints (a, Co) and (b, c{). 
We also assume that the integral 

H(y)= f [f(x,y,P) + (y'-p)fp(x,y,p)}dx (1.14.7) 
J a 

exists for y = y(x), where p = p(x,y) is the slope function (i.e., its value at 
{x,y) is the slope y' of the extremal through point (x,y)) of the field in D. 
This integral is extremely important for the theory. 

When y(x) = y*(x), the integral (1.14.7) reduces to (1.14.6) because 
y' = p in that case. It can be shown that (1.14.7) is path independent in 
D. For this reason it is known as Hubert's invariant integral. 

We use these facts as follows. Defining 

AF = F(y) - F{y*), 

we have AF = F(y) - H{y*) = F(y) - H(y) so that 

fb pb 

AF = J f(x,y,y')dx- / [f(x,y,p) + (y'-p)fp(x,y,p)]dx 

= / [f(x,y,y') - f{x,y,p)-(y'-p)fp(x,y,p)}dx. 
J a 
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Thus 

AF= J E(x,y,y',p)dx 
J a 

where the integrand 

E{x,y,y',p) = f(x,y,y') - f(x,y,p) - (y' -p)fP{xyy,p) 

is known as the Weierstrass excess function. We may now formulate con
ditions sufficient for y — y*(x) to be a strong minimum of F(y): 

(1) The curve y = y*{x) is admissible in a field of extremals for F(y), and 
(2) E(x,y,y',p) > 0 for all points (x,y) lying sufficiently close to the curve 

y = y*{x) and for arbitrary values of y'. 

Taken together, these have been called the Weierstrass conditions. The 
proof is nearly obvious. Suppose condition (1) holds, and let y = y(x) be 
any other curve lying in the domain covered by the field of extremals and 
connecting the desired endpoints. Then according to condition (2), 

AF= f E(x,y,y',p)dx>0 
J a 

for all curves y = y(x) that connect the endpoints and lie within some 
neighborhood of y*(x); moreover, the slope of y need not be close to that 
of y* so the minimum is strong. 

Although the Weierstrass conditions are attractive because of their sim
plicity, we can run into trouble when attempting to apply them to certain 
functionals. This happens, for example, with the problem of minimizing 

L 
3/2 

-^dx, y(0) = l, i/(3/2) = 1/4. 

The difficulty is related to the fact that the family of extremals has a so-
called envelope. 

Our treatment of sufficient conditions for the problem of minimum has 
been intentionally brief. We have formulated a couple of sets of such condi
tions; in fact, however, these are seldom used by practitioners. Rather, nec
essary conditions are usually applied to obtain extremals, and then various 
other methods are employed in place of sufficient conditions. For example, 
if a functional has a unique minimum residing in a class of functions, and 
if a unique extremal is found for the problem, then the desired minimum 



Basic Calculus of Variations 97 

must be reached on the extremal found. If several extremals qualify as can

didates for the minimum, it is often possible to test each one by calculating 

the corresponding values taken by the functional. The t rue minimum may 

then be identified and selected. Hence sufficient conditions may be viewed 

as largely of theoretical interest. 

1.15 E x e r c i s e s 

1.1 In the xy-plane, find the smooth curve between (o, j/o) and (6,2/1) which 
by revolution about the a;-axis generates the surface of least area. 

1.2 The brachistochrone problem is a famous classical problem in which one 
must find the equation of the plane curve down which a particle would slide from 
one given point to another in the least possible time when acted upon by gravity 
alone. Show that the required curve is a portion of an ordinary cycloid. 

1.3 Show that if / in the simplest functional depends explicitly on y' only, 
then the extremals are straight lines. 

1.4 During the time interval [0, T] a particle having mass m is required to 
move along a straight line from the position x(0) = xo to the position x(T) = 
X\. Determine the extremal for the problem of minimizing the particle's average 
kinetic energy. Explain your result physically. 

1.5 Apply Ritz's method with basis functions of the form <pn{x) = x2(l — x)2x 
to minimize the functional 

/ {{y"f + [1 + 0-1 sinx}(y')2 + [1 + 0.1 cos(2x)}y2 - 2sm(2x)y} dx. 
Jo 

The boundary conditions for the problem are t/(0) = y'(0) = y'{l) = 0, y(l) = 1. 

1.6 (a) Consider the problem of minimum for the simplest functional (1.1.9) 
with boundary condition y{a) + y(b) = 1. Find a supplementary natural boundary 
condition for this case, (b) Repeat for a condition of the more general form 
4>(y(a),y(b)) = 0 where ip = IP{OL,/3) is a given function of two variables. 

1.7 Find the equation of the plane curve down which a particle would slide 
from one given point (<z,j/o) to cross the vertical line x = b in the least possible 
time when acted upon by gravity alone. 

1.8 Find the smooth curve of least length between two points on the surface 
of the cylinder of radius a. 

1.9 For a functional of the form 

F2(y) = / f(x,y,y',y")dx, 
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find the Ritz system of equations corresponding to (1.4.3). 

1.10 Consider the problem of equilibrium of a plate when there are given forces 
/ acting on the edge of the plate. It is described as the problem of minimum of 
the functional 

~2 \ \ lwi* + wlv + 1vwxxwvy + 2(1 - v)w2
xy\ dx dy 

Fw dxdy — <p fw ds = 0. 
/ / . • 

What is the form of the Euler equation now? What are the natural boundary 
conditions for a minimizer? 

1.11 Suppose that a plate consists of two parts with different constant rigidities 
D\, D2 that connect along the line T of the mid-plane. Write out the conditions 
on the border line assuming that w, the deflection of the plate, is a continuous 
function together with its first derivatives over the whole domain. Note that 
these conditions have the same nature as the natural conditions. They have a 
clear mechanical meaning. 



Chapter 2 

Elements of Optimal Control Theory 

2.1 A Variational Problem as a Problem of Optimal Control 

Let us consider a special problem of the calculus of variations: 

/ f(x,y{x),y'(x))dx -> min (2.1.1) 
Ja yeC (1 )(a,6) 

y{a)-y0 

Let y(x) be fixed for a moment. We introduce an equation for a new 
function z — z(x): 

z'(x) = f(x, y(x), y'(x)), z(a) = 0. 

It is clear that 

pb rb 

z(b) = z(b) - z(a) = z'(x)dx = f(x,y(x),y'(x))dx. 
J a J a 

Now let us introduce an additional function u(x) = y'(x). In these terms 
the problem (2.1.1) can be formulated as follows:1 

Problem of Terminal Control. Given two ordinary differential equa
tions 

y'(x) = u(x), z'{x) = f(x, y(x),u(x)), 

and two initial conditions y{a) = y0 and z(a) = 0, in the set of all u G 
C(a, b) find u = u(x) at which z(b) attains the minimal value. 

1 Thanks to Dr. K.V. Isaev of Rostov State University, who furnished the authors with 
a notebook of his lectures on control theory. The presentation of the terminal control 
problem follows, in large part, Dr. Isaev's lectures. 

99 



100 Calculus of Variations and Functional Analysis 

Since z (b) is the value of the integral, this formulation is equivalent 
to the formulation of the problem of strong minimum of the functional 
(2.1.1). Note that the last formulation does not involve the operation of 
integration. It is well known that the solution of the Cauchy problem for 
an ordinary differential equation (ODE) is less computationally intensive 
than the solution of the corresponding integral equation. This transforma
tion of a variational problem to another form is numerically advantageous; 
moreover, it allows us to introduce a new class of minimization problems 
along with new methods of solution. Note that the new formulation should 
still give us the Euler equation for a minimizer and the natural boundary 
condition at x = b. 

The formulation (2.1.1) is equivalent to the Problem of Terminal Control 
if / is sufficiently smooth. But the Problem of Terminal Control has brought 
us to a new class of problems that fall outside the calculus of variations. 
These problems also fall outside classical ODE theory, since for the Cauchy 
problem in the latter, the number of differential equations always equals the 
number of unknown functions. In our formulation we have two equations 
and three unknowns y, z, u. But if u is given we have a Cauchy problem 
in which y and z are uniquely determined. We solve a special minimum 
problem, seeking the minimum value of z at point 6, changing u in the 
class of continuous functions. Continuity of u was stipulated by the tools 
of the calculus of variations. But for many problems having the form of 
the Problem of Terminal Control or something similar, this condition is 
too restrictive. We shall consider other tools for the investigation of such 
problems — tools not equivalent to those of the calculus of variations. 

The Problem of Terminal Control falls under the heading of optimal 
control theory. The designation "terminal control" refers to the fact that 
something, namely z, is to be minimized at a final time instant x = b. A 
more general formulation is presented in the next section. 

We have thus examined a variational problem as a problem of optimal 
control. Let us take a moment to compare the setups of these two problems. 
Each must provide a functional to be minimized. In the variational setup 
this functional is an integral that incorporates some information about the 
system structure. In the control problem these elements are separated: the 
system is governed by a set of ODEs relating internal parameters y, z to an 
external parameter u that can be changed at will (under some restrictions 
of course), while the "cost functional" is formulated separately. There are 
advantages in choosing to disentangle the elements of the problem setup 
in this way; in fact, many practical problems are so posed naturally and 
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cannot be posed as variational problems. As a familiar example, consider 
a child sitting on a playground swing. The amplitude of the oscillations 
is governed by the pendulum equation — an ODE — and the effective 
length u — u{t) of the pendulum is under the child's control. There is no 
reason why this control parameter must be changed in a continuous fashion; 
every child knows that the best results can be obtained by sudden shifts 
in his or her center of gravity. Hence we should be able to accommodate 
discontinuities in u. Of course, it is easy to cite examples on a much larger 
scale of economic importance — examples ranging from space travel to the 
damping of a ship's oscillations in the ocean. 

In short, we shall consider problems in which there is a "system" or 
"controlled object" having a control parameter u. In general we seek u 
that minimizes some cost functional G, which in turn depends on u through 
an initial or boundary value problem to a set of ODEs. We will not con
sider all aspects of standard mathematical optimal control theory, including 
existence theorems, etc. But we will present an introduction to practical 
aspects of the theory that relate closely to the numerical solution of optimal 
control problems. The expression for the increment of the cost functional 
G which we will derive is analogous to the first variation in the calculus of 
variations, or to the differential in calculus. Its expression provides a basis 
for various numerical methods approaches to optimal control problems. It 
also brings us the important Pontryagin's maximum principle, which allows 
us to determine whether a governing function u is optimal. 

2.2 General Problem of Optimal Control 

First we generalize the Problem of Terminal Control. A controlled system is 
described by n + m functions, which depend on a known variable. We shall 
denote this latter variable by t or x and regard it as the time variable. Given 
are n ordinary differential equations involving the first n parameters of the 
system j / i , . . . , yn

 a n d their first derivatives. These equations are written in 
normal form. The vector y = (2/1,... ,yn) is often called the state vector, 
and its component functions y\,... ,yn the state variables. The remaining 
m parameters u\,... ,um are considered as free parameter-functions. We 
call u = ( u i , . . . ,um) the control vector, and its component functions the 
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control variables. The differential equations are 

y'i(t) = h(t,yi(t), • • • ,yn(t),ui(t), 

2/2(*) = h(t,yi(t),... ,yn(t),ui(t), 

V'nit) = fn(t, 3/1 (t), • • • , yn{t), U!(t), . . . , Um(t)), 

or 

y'(t) = f(t ,y(t),u(t)). (2-2.1) 

Equations (2.2.1) should be supplemented with some conditions at the ini
tial time t — to: 

y(*o) = yo, (2.2.2) 

where yo is a given initial state. 
We now consider a problem of the form 

G(y(T)) -» min 

over the set of admissible u, where T is a fixed (final) time instant. The 
quantity G(y(T)) is a functional dependent upon the values taken by u 
and y over [to,T]. The space in which these vector functions reside is an 
important issue to be discussed later. Whereas in variational problems 
we permit only smooth functions for comparison and consider non-smooth 
functions as exceptions, here we consider non-smooth control functions since 
these tend to be more useful in applications (and, often more importantly, 
allowed by the method of solution and investigation). 

Many optimal control problems arise in classical mechanics. There a 
system, described by the equations of classical mechanics, can be acted 
upon by forces whose magnitudes and directions are subject to certain 
restrictions. We obtain a problem of terminal control if we attempt to 
minimize the value of a function, depending on the internal parameters of 
the system, at a certain (final) time instant. For example, we may wish to 
bring the system to a certain state with the best accuracy. 

We can generalize the Problem of Terminal Control by supplanting the 
initial values (2.2.2) with n equations given at some fixed points tk G [to, T]: 

• ,um(t)), 

• ,um(t)), 

S f c(y(t f c))=0, k = l,...,n. 
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The goal function can incorporate values of y at other points of [to, T\. 

G(y( r i ) , . . . , y ( r r ) ) ->min. 

Such a problem is solved practically by any system that has to meet some 
time schedule (e.g., by a flight team who must land at several airports at 
scheduled times during a flight). 

Let us consider another type of optimal control problem: 

Time-Optimal Control Problem. A system is described by (2.2.1). It 
is necessary to move the system from state y(io) = yo to state y(T) = y / 
in minimal time T. 

Again, we leave the class of admissible u as an issue for the future. Note 
that for this problem an existence theorem is essential in many cases, since 
there are mechanical and other systems for which an initial-final pair of 
states yo,y/ is impossible to take on for any time. 

We see that in Time-Optimal Control we have 2n given boundary con
ditions, but there is an additional unknown parameter T that must be 
determined as an outcome of the solution. We see a big difference in the 
number of boundary values for the state vector y in these problems. This 
is provided by the arbitrariness of the control vector u, changes in which 
can lead to the requirement for new boundary conditions. The restriction 
on the number of boundary conditions r at each "boundary" (initial, final, 
or intermediate) point of time is that it cannot exceed n, the number of 
components of y and, in total, at any admissible fixed u we have to ob
tain a boundary value problem for our system of equations that is solvable 
(not necessarily uniquely). When the boundary value system has too few 
boundary conditions for uniqueness, then, in the same way there arise natu
ral boundary conditions in the calculus of variations, there arise additional 
boundary conditions for y in the optimal control problems. In some ver
sions of the numerical methods that are used for solving the corresponding 
problems, such natural conditions do not participate explicitly — as is also 
the case for natural conditions in the calculus of variations — however, an 
optimal solution obeys them. 

These are not the only possible setups for optimal control problems. We 
can consider, for example, problems where the cost functional is given in 
an integral form which takes into account the values of y at all instants of 
time. 
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Above we mentioned restrictions on the control vector u, but many 
problems require restrictions (frequently in the form of inequalities) on y as 
well. For example, the problem of manned spaceflight forces us to minimize 
expenses while restricting accelerations experienced during the flight. 

Many real problems of optimal control require us to consider (nonlinear) 
systems of PDEs rather than ODEs. The interested reader can find this 
discussed elsewhere. Often, however, these problems can be reduced to the 
problems that appear in this chapter. Each practical problem for the same 
object can lead to a different mathematical setup, as well as to different 
theoretical and practical results. In this book we will consider only mathe
matical aspects of the problems of optimal control, leaving applications to 
many other sources. First we would like to reduce the setup of the problems 
under consideration a bit. 

The system (2.2.1) is said to be autonomic if / does not depend explic
itly on t. Henceforth we shall consider only autonomic systems with to = 0. 
We may do this without loss of generality. First, given (o / 0 we may shift 
the time origin by putting x = t — to- Let us consider the transformation 
to autonomic form. In principle there is nothing to limit the number of 
components that y may have. So we can always extend it by an additional 
component yn+i, supplementing (2.2.1) with an additional equation 

y'n+\i.x) = l 

and initial condition 

y„+i(0) = 0. 

Then (2.2.1) takes the form 

y'(x) = f{yn+1(x),y(x),u(x)). 

Thus, redenoting y = (j / i , . . . ,yn+i) and the corresponding f, we arrive 
again at (2.2.1) but in the form 

y'(t) = f(y(t),u(t)). 

This is the autonomic form we shall consider. 

2.3 Simplest Problem of Optimal Control 

So far we have said little about the restrictions to be placed on the behavior 
of u(i). We shall take the class of admissible controls to consist of those 
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vector functions that are piecewise continuous on [0,T]. This is in contrast 
to what we saw in the calculus of variations. It is possible to relax this 
restriction on u(t), requiring it to be merely measurable in some sense, but 
we leave this and related questions of existence2 for more advanced books. 

What constitutes a "small" variation (increment) of a control function? 
In the calculus of variations we regarded a variation (increment) of a func
tion as small if its norm in the space C^(0,T) was small. With such a 
small increment taken in its argument, the increment of a functional was 
also guaranteed to be small, and we were led to apply the tools of calcu
lus. To obtain the Euler equation and the natural boundary conditions 
we linearized the functional with respect to the increment of the unknown 
function. Here we would like apply the same linearization idea and ob
tain necessary conditions for the objective functional to attain its minimal 
value, but at the same time introduce another notion of smallness of the 
increment of a control function. 

When we linearize an expression we use the fact that a small increment 
in the independent variable brings a small increment in the value of the 
expression. We understand that if we change the control function in some 
small way then the increment of the output function will be small. But in 
Newtonian mechanics if a large force acts on a material point for a short 
time then the deviation of the point trajectory during a finite time is small 
— the shorter the time of action, the smaller the deviation. So "smallness" 
of the increment can be provided by a force of small magnitude or by a 
force of short duration. This situation is quite typical for disturbances to 
ODEs, and suggests a new class of "small" increments to control functions. 
From a more mathematical viewpoint, the norm of C(0,T) is not the only 
norm under which we can introduce small increments while requiring that 
the change in a solution exhibit continuous dependence on changes in the 
control function. In particular, we may use the norm of L(0, T). 

Let us introduce a class of functions U in which we seek control functions 
u = u(t). U is a set of functions piecewise continuous on [0, T], and is 
restricted by some conditions: normally simultaneous linear inequalities 
given pointwise. An example of such a restriction is 

0 < u(t) < 1. 

2Such questions are more theoretical than we are able to treat here, but this does not 
mean they are unimportant. There are practical problems for which no optimal solution 
exists. In such cases, however, it is often possible to obtain a working approximation to 
an optimal solution. 
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The simplest problem of optimal control theory is the following problem of 
terminal control: 

Simplest Problem of Optimal Control. Let a controlled object be 
described by the equation 

y'(t) = f(y(t),u(t)) (2.3.1) 

subject to 

2/(0) = yo- (2-3.2) 

Among all functions belonging to a class U described above, find a control 
function u(t) that minimizes g{y{t)) at t = T: 

g(y(T))-> min 
u(t)&A 

Here g(y) is a continuously differentiable function on the domain of all 
admissible values of y = y(t).3 

First we introduce the main elementary increment of the control func
tion, a so-called needle-shaped increment. This is where optimal control 
theory begins to depart from the calculus of variations. We choose some 
u{t) G U and let t — s be a point at which u(t) is continuous. For definite-
ness we consider all the functions u(t) to be continuous from the left on 
[0,T]. Consider another function u*(t) that differs from u{t) only on the 
half-open segment (s — e,s] as shown in Fig. 2.1. Analytically this function 

u. ( t ) = {«(«)• * * ( - * . ' ] . (2.3.3) 
[v, te(s-e,s], 

3Rather than formulating explicit restrictions on / and g, we simply assume they are 
sufficiently smooth for our purposes. In particular we shall differentiate g(y) and f(y, u) 
with respect to y supposing that the corresponding derivatives are continuous, we shall 
assume a continuous dependence of f(y,u) on u, and we shall suppose that for any 
fixed admissible u(t) G U the Cauchy problem (2.3.1)-(2.3.2) has a unique solution that 
depends continuously on the initial condition yo- All this could be formulated purely 
in terms of the given functions / and g and it is possible that doing so would give us 
even sharper results, but we choose clarity over rigor at this stage. In fact, the simple 
problem we have chosen to consider is not the most realistic one available. However, 
its investigation will open the way to general problems without obscuring the essential 
ideas. 
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where e > 0 is sufficiently small. The increment 

Su(t) =u*(t) -u(t), 

which is zero everywhere except in the interval (s - e, s] of length e, is what 
we term needle-shaped. Its smallness is characterized by 

HHIL(O,T) = / \Su\ dt, 

which is of order e. 

— < 1 * 

S-E S t 

Fig. 2.1 A control function subject to a needle-shaped increment. 

In what follows we suppose u*(t) belongs to U. We also assume that 
together with some u*(t), defined by eo > 0 and vo, to U there belong all 
the u*(t) having the same final point s of the jump for which e < EQ. Since 
the restrictions for U are usually given piecewise by simultaneous linear 
inequalities, this assumption does not bring additional restrictions for such 
problems. 

Many textbooks consider needle-shaped functions that are constant on 
the interval (s — £, s], but we consider them only for small e so the norm in 
L(0, T) of the difference between the above introduced and the traditional 
needle-shaped functions is of order higher than e. We took our definition 
only for convenience. Note that we can approximate (in the uniform norm) 
any u{t) G U with a finite linear combination of needle-shaped functions. 

Since g(y(T)) is a number that depends on u(t) through (2.3.1) and 
(2.3.2), we have a functional defined on U. Our experience suggests that 
we apply the ideas of calculus. We need to find the increment of the func
tional under that of the control function, introducing something like the 
first differential. Now Su(t) is an elementary needle-shaped function whose 
smallness is determined by e. From the corresponding increment of g(y(T)) 
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we must select the part that is proportional to e and neglect terms of higher 
order in e. 

As an intermediate step we will have to obtain the increment in y(T) 
corresponding to Su(t). Let us denote the solution of (2.3.1)-(2.3.2) corre
sponding to u*(t) by y*(t): 

y*'(t) = /(»*(*). «*(*)), y*(0) = yo. 

We denote 

Ay(t) = y*(t)-y(t), J(u) = g(y(T)), 

and seek the main (in e) part of the increment 

AJe,„(u) = J(u*) - J(u). 

Again, this main part must be linear in e; we neglect terms of higher order 
in e. In this, we consider u(t) as given and hence y(t) is known uniquely as 
well. 

Theorem 2.3.1 Let t = s be a point of continuity of a control function 
u(t). We have 

AJ5,„(u) =eSSiVJ(u) + o(e), e > 0, (2.3.4) 

where 

5s,vJ(u) = iP(s)[f(y(s),u(s)) - f(y(s),v)} 

and where ip(s) is a solution of the following Cauchy problem (in the reverse 
time): 

, , . , _ .WS^iW)* . , , «T) = -«gQ>. (2.3.5) 

The quantity 5StVJ(u) in (2.3.4) is called the variational derivative of the 
second kind. 

Proof. Take e > 0 so small that all the points of [s — e, s] are points 
of continuity of u(t). We require that u*(t), which differs from u(t) by a 
needle-shaped increment, is admissible and has the form (2.3.3). We divide 
the proof into several steps. 

Step 1. First let us find the main part in e of the increment of y(t), in 
particular at t — T. In Fig. 2.2 we show the behavior of y(t) and y*(t). 
When t < s — e we have u*(t) = u(t) and thus y*(t) = y[t). 



Elements of Optimal Control Theory 109 

*V(T) 

Vo 

S-e. S ft 

Fig. 2.2 The deviation of a trajectory y(t) under a needle-shaped change of the control 
function on the time interval [s — e, s]. 

Let t £ [s — e, s]. Subtracting the equations for y* and y we get 

y*'(t) - y'(t) = f(y*(t),v) - f(y(t),u(t)) 

or, since Ay(t) = y*(t)—y(t), the equation for the increment of the function 
y{t) is 

Ay'(t) = f(y(t) + Ay(t), v) - f(y(t), u(t)). (2.3.6) 

Besides, we have the "initial" condition for this interval 

A y ( s - e ) = 0 (2.3.7) 

since y*(s — e) = y(s — e). Integration of (2.3.6) gives us an equivalent 
integral equation on [s — e, s]: 

Ay(t) - Ay(s - e) = [ \f{y{T) + Ay(r), v) - f(y(r), u(r))] dr. 

By (2.3.7) we have 

A y ( t ) = / [f{y{T)+Ay(T),v)-f(y(r),u(T))}dr on [s-e,s]. 
J s—e 

We assume f(y, u) is continuous and bounded on the domain where the pair 
(y, u) takes its value, and thus when e is small the modulus of the integral 
on the right is bounded by Ms for £ £ [s — e, s]. So this integral has the first 
order of smallness in e when t £ [s — e, s], and thus the same value bounds 
|Ay(i)| on the same segment. Since e is small and y(t), u(t) are continuous 
on [s — e,s], the integrand is continuous as well, and we introduce in the 

y'(t) 

y(t) 
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values of this integral an error of order higher than the first in e if we replace 
the integrand by the constant value f(y(s),v) — f(y(s),u(s)). So 

Ay(t) = f [f(y(s), v) - f(y(s), u(s))} dr + o(e) 
J S — E 

= (t-s + e)[f(y(s),v) - f(y(s),u(s))} + o(e), 

and thus 

Ay(s) = e[f(y(s),v) - f(y(s),u(s))} + o(s). (2.3.8) 

This gives us the "initial" value for the solution y*(t) on [s,T]. Note that 
on [s — e, s] the change of Ay(t) in t is almost linear, which is expected 
since e is small. 

On [s,T], subtracting the equations for y{t) and y*(t) we get 

Ay'(«) = f(y(t) + Ay(t), u(t)) - f(y(t), u(t)). (2.3.9) 

This is supplemented by the initial condition (2.3.8), which is small when 
e is small. Since y and y* obey the same equation on [s, T] but their initial 
values differ by a small value Ay(s) of order e, we can expect that there is 
continuous dependence of the solution on the initial data and hence that 
the difference between y* and y, which is Ay, remains of order e when T is 
finite. So we linearize (2.3.9) using the first-order Taylor expansion 

f(y(t) + &y(t),u(t)) - f(y(t),u(t)) = df{y{tJy
U{t)) Ay(t) + o(\Ay(t)\) 

to get 

Ay'{t)=
df^y

U^Ay(t) + o(e). 

The main part of Ay(t), denoted by Sy(t), satisfies 

W)-dmtJy
U{t))Sy(t). (2.3.10) 

This can be integrated explicitly since y(t) and u(t) and the initial condition 
for 6y(t) are defined by (2.3.8) as 

6y(s) = e[f(y(S),v)-f(y(s)Ms))}. 

However, we should allow for an extension to a system of ODEs. So we 
shall produce a mathematical trick of "finding" the solution in other terms. 
At this point we must interrupt the proof and introduce some material. 



Elements of Optimal Control Theory 111 

2.4 Fundamental Solution of a Linear Ordinary Differential 
Equation 

Consider a linear ODE 

x'(t) = a(t)x(t). (2.4.1) 

This has a unique solution for any initial condition x(s) = XQ, a(t) being a 
given continuous function (it can be continuous on an interval if we consider 
the equation on this interval or at any t). The fundamental solution is a 
function ip(t, s) which at any fixed s satisfies 

d<fi(t,s) 
dt =a(t)ip(t,s) 

and the condition 

(p(s,s) = 1. 

This function in two variables has many useful properties, the first of which 
is trivial: 

Property 2.4.1 A solution of (2.4.1) satisfying the initial condition 
x(s) = xo is 

x(t) =x0<p(t,s). 

Property 2.4.2 We have 

<p(t,s) = <p(t,T)<p(T,s) (2.4.2) 

for any t, s, and r. 

Proof. Indeed, for fixed T,S the function <p(t,r)<p(T,s) of the variable 
t is a solution to (2.4.1) when t is an independent variable, since <P(T,S) 

does not depend on t. Thus we have two solutions to (2.4.1): the functions 
<p(t,s) and (p(t,T)tp(T,s). But for t = T they correspondingly reduce to 
<p(r, S) and tp(r, T)<P(T, S) = 1 • </?(T, S), and thus at t = r they coincide. By 
the uniqueness of the solution of the Cauchy problem for (2.4.1) (the initial 
value is given at t = r ) they coincide at any t. D 

Since (p(s, s) = 1 we have <p(s,t) <p(t, s) = 1, hence 

P (M) = 1 M M ) . (2-4.3) 

In the next section we shall need d<p(t,s)/ds. By (2.4.3) we have 
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Property 2.4.3 The function <p(t,s) considered1 as a function in s sat
isfies 

^ M = - a ( « ) „(*,«). (2.4.4) 

Proof. Using (2.4.3) we have 

dtp(t,s) d(<p-1(s,£)) _2 , ^d(tp(s,t)) _o, iX , x , ,x 

= —a(s)<p_1(s,i) = —a(s)(f(t,s). 

Now we can continue the proof of Theorem 2.3.1. 

D 

2.5 The Simplest Problem, Continued 

Setting 

we apply the notion of fundamental solution to (2.3.10). So the solution5 

of (2.3.10) on [s,T] satisfying (2.4.2) is 

5y(t) = e [f(y(s),v) - f(y(s),u(s))} <p(t, s). 

Hence 

6y(T) = e \f{y(s),v) - f(y(s), u(s))} <p{T, s) 

and we can write 

Ay(T) = e [f(y(s), v) - f(y(s), u(s))} ip{T, s) + o(e). (2.5.2) 

Step 2. The main part of the increment of J(u) = g(y(T)) can be found 
using the same idea of linearization and Taylor expansion: 

AJ(u) = J{u*) - J(u) 

= g(y(T) + Ay(T))-g(y(T)) 

dg{y) 
dy 

Ay(T) + o(\Ay(T)\). 
y=y(T) 

4Here we consider t as a fixed parameter, which is why we use the notation for an 
ordinary derivative rather than a partial derivative. 

5 Of course, this is really just a useful representation rather than an explicit solution. 
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With regard for (2.5.2) this brings us to 

.My) AJ(u) = e-
dy 

\f{y{s), v) - f(y(s), u(s))} ,p(T, s) + o(e). 
y=v(T) 

So we have found the main part of the increment of the objective functional; 
however, we must still represent it in the form shown in Theorem 2.3.1. 

Step 3. Let 

Mv) 1>{s) = -
dy 

<p{T,a). (2.5.3) 
y=y(T) 

With this notation A J(u) takes the form (2.3.4). It remains only to demon
strate that V(s) satisfies (2.3.5). The second relation of (2.3.5) holds by 
definition of the fundamental solution: 

4>(T) = - Mv) 
dy 

v ( r > r ) = . ^ ) 
y=y(T) 

Let us show that ip(s) satisfies the first equation of (2.3.5): 

Mv) dtp(s) _ d 

ds ds dy 
<p(T,s) 

My) 
dy 

dg{y) 

y=y(T) 

d 

y=y(T) ds 
f{T,s) 

dy 
-a(s)<p{T,s)] 

y=y(T) 

a(s) My) 
dy 

<p{T,s). 
V=V(T) 

Here we used (2.4.4) to eliminate the derivative of <p(T,s) with respect to 
the second argument. Finally, remembering (2.5.3) we obtain 

TP'(S) = -a(8)ip(s). 

This is the needed equation since a(t) is given by (2.5.1). 

2.6 Pontryagin's Maximum Principle for the Simplest 
Problem 

What have we established in Theorem 2.3.1? To find the increment in the 
goal functional under a needle-shaped increment of the control function 
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u(t), we should do the following: 

(1) Solve the Cauchy problem (2.3.1)-(2.3.2). In practice this is often done 
numerically (e.g., by the Runge-Kutta method). 

(2) Having obtained y(T), formulate equations (2.3.5) and solve this 
Cauchy problem with respect to ip(s) in the "reversed" time. 

(3) Write out (2.3.4). 

The second condition in (2.3.5) is analogous to the natural boundary con
dition in the calculus of variations. The first equation in (2.3.5) is called 
the conjugate equation; there is a weak analogy between this and the Euler 
equation. We also observe that in performing steps (1) and (2) we effec
tively solve a boundary value problem for the pair y(t),ip(s). A similar pair 
of equations arises for other types of optimal control problems, but in the 
terminal control problems they split. 

Let us reformulate this problem, introducing a new function H(y,i/j,u) 
in three variables: 

H(y,ip,u) =ipf(y,u). 

Because 

dH(y,ijj,u) 

we can rewrite (2.3.1) and (2.3.5) as 

,M_dH{y(t),il>(t)Mt)) 

or 

y'{i)=H^{y{t)^{t),u{t)), il>'(t) = -Hv(y(t),1>(t)Mt))- (2-6.1) 

This is the so-called Hamilton form of a system of ODEs that is frequent 
in physics. L.S. Pontryagin called H(y,ip,u) the Hamilton function, but 
it was subsequently called the Pontryagin function. Again, we will obtain 
equations of the form (2.6.1) when we consider any sort of control problem 
for the system described by (2.3.1). 

Let us rewrite the increment AJ(u) under a needle-shaped increment 
with parameters e,v given at t = s, which is presented by (2.3.4), in terms 
of H{y,^,u): 

AJ(u) = e (H(y(s)^(s),u(s)) - H(y(s),i;(s),v)) + o(e). 

8H(y,ip,u) = df(y,u) 

dy dy 

^{t) = _?Bv(t)Mt)Mt)) 
dy 
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Now we can formulate a necessary condition of minimum for J(u), known 
as Pontryagin's maximum principle: 

Theorem 2.6.1 Let u(t) be an optimal control function at which J(u) 
attains its minimal value on U, the set of all admissible control functions, 
and let y(t) and ip(t) be solutions of the boundary value problem (2.3.1), 
(2.3.2), (2.3.5). At any point t = s of continuity of u(t), the function 
H(y(s),tp(s),v) considered as a function in the variable v takes its maxi
mum value at v = u(s). 

Proof. J{u) attains its minimum at u = u(t). For any admissible control 
function u*(t) given by (2.3.3) we have 

J{u*) - J(u) > 0. 

For a point t = s of continuity of u — u(t), in terms of the Pontryagin 
function this is 

e (H(y(s),TP(s), u(s)) - H{y(s), 1>(s), v)) + o(e) > 0. 

Note this is valid for any admissible v and small, nonnegative e. It follows 
immediately that 

H(y(S)^(S),u(s)) ~ H(y(s), i>(s), v) > 0, 

so for any admissible v we get H(y(s),ip(s),u(s)) > H(y(s),ip(s),v). O 

Let us consider the application of these results to a simple example. 

Example 2.6.1 Find the form of the control function u(t), \u(t)\ < 2, 
that gives minimum deviation of y(t) from 10 at t = 1 (described by the 
function g(y(l)) = (10 — y(l))2) for a system governed by 

y'(t) + y(t) = u(t), i/(0) = 1. 

Solution We stay with our previous notation. Rewrite the equation as 
y' = —y + u and construct Pontryagin's function 

H(y,ip,u) = ip(-y + u). 

We need to learn when this function takes its maximum value with respect 
to u along a solution. For this we need to know some properties of ip. Let 
us establish how ip changes. The conjugate equation for ip is 
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Its general solution is ip = cet. For this example we need not find (y,ip) 
for any control function, so we will not formulate the final value for tp but 
merely note that its sign coincides with that of the constant c. This means 
that along any possible solution y = y{t), at any point of continuity of y, the 
maximum is taken when ip(t)u(t) takes its maximum. Since this expression 
is linear in u, the maximum is taken when it takes one of its extreme values 
u — ±2 and, because of the constancy of sign of ip, it cannot change from 
one extreme to another.6 

So now we must consider the governing equation in two versions, with 
u = 2 and u = —2. These are 

y' = -y + 2, y' = -y- 2. 

The initial condition leads to the respective solutions 

I/i(t) = - e - * + 2, y2(t) = 3e _ t - 2. 

Comparing the values of the cost function g(y) for y\ and yi at t = 1, we see 
that u = u(t) = 2 is the optimal control. Correspondingly y{t) = —e~t + 2, 
and the minimum value of g is g(y(l)) = (8 + e - 1 ) 2 . 

This example shows that not every optimal control problem has a solution. 
Indeed, if we pose the minimum time problem for the same equation with 
y beginning at y = 1 and ending at y = 10, under the restriction |u| < 2, 
then there will be no solution; a solution starting from the point j/(0) = 1 
never takes the value 10. 

Let us continue consideration of the same problem. We denote by J(u) 
the value g(y(l)) so J is defined as a functional of the control function u. 

Example 2.6.2 For the system of the previous example, find the main 
part of the increment of the goal functional under a needle-shaped distur
bance of u if its value is u(t) = 1 for all t. 

Solution The governing equation of the system for u = 1 is y' = — y + 1. 
The solution that satisfies the initial condition is y = 1. Thus the final 
value for tp is 

^ ( l ) = - ^ ^ = - 2 . 9 ( - l ) = 18, 
oy 

6 A reader familiar with the elements of linear programming will note that the situation 
is the same as in that theory. Since many optimal control problems are described by 
relations containing a control vector in a linear manner, the reader sees that at this 
stage it is necessary to solve a linear programming problem in which we must maximize 
a linear function over a set in a finite vector space restricted by linear inequalities. 
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and the corresponding solution of the conjugate equation is 

tp(t) = de\ d = 18e. 

Thus the main part of the increment of the goal functional is 

eSStVJ(u) = ip(s)[f(y(s),u(s) - f(y(s),v)] 

= 18ee1+t(0 + l - i ; ) 

= 18£e1 + t( l- t>) 

for any time s. It is clear that if we wish to decrease locally at any point s 
the value of the functional, then we should take the maximum admissible 
value of v, which is v = 2. 

This problem is important because it shows how we can improve an initial 
approximation to u. For sufficiently small e, introducing a needle-shaped 
change of u at some s we reduce the value of g(y(l)). Choosing e and s and 
decreasing correspondingly the value of J(u) (of course, this happens only 
when e5StVJ{u) has negative values on [0,1] — if there are no such values 
then a corresponding function u is optimal) we get a better approximation 
to the optimal control function. But the choice of e, s is not uniquely 
defined even for this simple problem. If e is small and fixed, it is clear that 
the maximal change in J{u) happens (in this problem) when we take the 
maximum admissible value of v, that is v = 2. But what is the value of 
s? It is clear that we should introduce the needle-change into u at s where 
s5s>vJ{u) takes the lowest negative value. In this problem it is easy to see 
that it is the point s = 1. Changing u to 2 on [1 - e, 1] with some small 
e we get a new control function u* that is not optimal again. So we need 
to repeat the same steps: find s5S}VJ(u*), choose e and s, and introduce 
optimally a new needle-shaped perturbation into u to maximally decrease 
J(u). This gives a second approximation to the optimal solution, and so 
on. In this simple case the approximation will be quite accurate. However, 
in practical problems, when we do not know the solution u in advance, it 
can be difficult to choose e and s at each step. 

Pontryagin's maximum principle allows us to test a given control func
tion for optimality. In addition, we shall see later that for some relatively 
simple problems it can suggest an approach to finding solutions. Next we 
would like to note that formula (2.3.4) is the background for a class of nu
merical methods for finding an optimal solution. We shall discuss this for 
the general problem of terminal control, which should be further considered. 
In the next section we present some essential mathematical tools. 
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2.7 Some Mathematical Preliminaries 

When we considered the simplest problem of control theory we used the 
notions of fundamental solution and linearization. To extend these to vector 
functions one can use the tools of matrix theory, but the resulting formulas 
are much more compact and clear when presented in tensor notation. We 
therefore pause to present a small portion of tensor analysis. In doing 
so we shall confine ourselves to the simplest case involving only Cartesian 
frames having orthonormal basis vectors ei , e 2 , . . . , e„. In the general case 
the controlled functions y(i) take values in the n-dimensional vector space 
spanned by this basis, so we can represent y(t) as 

n 

y(*) = ^2vi(t)ei-
i = i 

Prom now on we omit the summation symbol and write simply 

y(*) =Vi(t)ei-

This is the usual convention, due to Einstein, for dealing with Cartesian 
tensors: whenever we meet a repeated index (in this case i) we understand 
that summation is to be performed over this index from 1 to n. Now we shall 
demonstrate how this expansion can be used along with the dot product to 
produce representations of vectors, and to reproduce common operations 
involving vectors and matrices. 

Matrices as the component representations of tensors and 
vectors 

To perform operations with a vector x we must have a straightforward 
method of calculating its components xi,X2,-.-,xn with respect to a basis 
e i , e 2 , . . . , e n . This can be done through simple dot multiplication. For 
additional clarity let us momentarily suspend our use of the summation 
convention. Dotting x with ei we have 

x • ei = (cciei + z 2e 2 H h xnen) • ex 

= zi(ei - e i )+a : 2 (e 2 • ei) -\ hz„ (e n • ei) . 

Because ei • ei = 1 and e2 • ei = e3 • ei = • • • = e„ • ej = 0, we obtain 

x\ = x • ei . 



Elements of Optimal Control Theory 119 

Here the key observation is that 

_ Jl , 3=i, 

and this same observation can be used in similar fashion to develop the 
formulas 

Z 2 = x - e 2 , x3 = x - e 3 , . . . , xn = x • en. 

In terms of the Kronecker delta symbol (page 38) we could have written 

x • ei = (ziei + x2e2 •] h x„en) • ex 

= xi5n + X2S21 H h xn5„i 

= Xi 

to calculate x\. We can now return to the summation convention and repeat 
these calculations in tensor notation. If x is given by 

X — <T^6^ 

then for i = 1,2,. . . , n we have 

Xi — X • &i 

since x • e* = Xkek • ê  = Xk$ki = %i for each i. Thus in a given basis 
ej the components X; of the vector x are determined uniquely, and x is 
determined by these values £j. It is convenient to display the components 
of x in a column matrix: 

(Xl\ 

X2 

\ Xn / 

Hence a matrix can act as the component representation of a vector. It 
is important to understand that a vector itself is an objective entity: it 
is independent of coordinate frame. Consequently if we expand the same 
vector x relative to a different Cartesian basis ei , §2 , . . . , e„ and repeat the 
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above steps, we will in general arrive at a matrix representation 

\Xn J 

whose entries ik differ from the Xk. We shall return to this issue later after 
examining tensors. 

If x and y are two vectors, their dot product is a scalar: 

c = x - y . (2.7.1) 

When we represent each of x and y with respect to a basis e, as 

X — X{Qi) 

we can easily calculate c as 

y = Vj^j, 

X * y — X-i&i ' IJj&j — XiVjy^i ' ^j) — XiVjOij — ^iVi' 

Of course, this same result arises from the matrix multiplication 

( xi x2 ••• xr ) 

\Vn / 

(2.7.2) 

This familiar correspondence between dot multiplication of vectors and mul
tiplication of the component matrices will be extended in what follows. 

A vector is an example of a tensor of the first rank. The development 
of our subject will also require some simple work with tensors of the sec
ond rank. Just as a vector can be constructed as a linear combination of 
basis vectors e^, a tensor of the second rank can be constructed as a linear 
combination of basis dyads. These are in turn formed from pairs of vectors 
through the use of a tensor product This operation, denoted ®, obeys laws 
analogous to those for ordinary multiplication: if a, b, and c are vectors 
then 

(Aa) <g> b = a ® (Ab) = A(a ® b), 
(a + b)<8>c = a<8>c + b ® c , 

a (8) (b + c) = a ® b + a ® c , (2.7.3) 
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for any real number A. We shall shorten the notation for the tensor product 
somewhat by omitting the ® symbol: thus we write ab instead of a <g> b. 
The quantity ab is an example of a dyad of vectors. If we expand each of 
the vectors a and b in terms of a basis e*, the dyad ab becomes 

In this way the n2 different basis dyads ejej make their appearance. The 
dyads ejej form the basis for a linear space called the space of tensors of 
the second rank. An element A of this space has a representation of the 
form 

where the a2 n Eire called the components of A relative to the basis e^e,-. 
Here we again use Einstein's summation rule. Note that we can write out 
the components of A as a square array 

/ a n ai2 ••• a i „ \ 
^ 2 1 <222 • • ' 0-2n 

\a„i a„2 • •' " „ „ / 

and thus we get a correspondence between the tensor A and this matrix of 
its components. 

One goal of our discussion is to demonstrate the usefulness of the dot 
product. The dot product of a dyad ab and a vector c is defined by the 
equation 

( ab ) -c = a (b -c ) . (2.7.4) 

The result is a vector directed along a. Analogously we can introduce the 
dot product from the left: 

c • (ab) = (c • a)b. (2.7.5) 

These operations have matrix counterparts: (2.7.4) corresponds to multi
plication of a matrix by a column vector and (2.7.5) corresponds to multi
plication of a row vector by a matrix. For example let us write 

v = (ab) • c, (2.7.6) 
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expand c as c = c^efc, expand ab according to (2.7.3), and use (2.7.4) to 
write 

Hence 

v = cLibjBiej • Ck^k = ctibjSjkCkei = a,ibjCj&i. 

Vi = ctibjCj (2.7.7) 

for i = 1, 2 , . . . , n. Pausing to unpack the succinct tensor index notation, 
we see that (2.7.7) actually means the system of equalities 

vi = aibici + a\b2c2 + • • • + a\bncn, 

v2 = a2b\C\ + a2b2c2 H h a2bncn, 

anbiCi + anb2C2 + anb„cn, 

or, in matrix form. 

( Vl \ 
v2 

I a\b\ a\b2 

a2b\ a2b2 

\vn J 

a-ibn \ 
a2bn 

\ anbi anb2 • • • anbn ) 

c2 

\cn J 

(2.7.8) 

We now recall the analogy between (2.7.1) and (2.7.2), and examine (2.7.6) 
and (2.7.8) with similar thoughts in mind. Dot multiplication once again 
stands in correspondence with matrix multiplication; moreover, it is clear 
that the dyad ab is represented by the square matrix 

I axbi aib2 

a2b\ a2b2 

aibn \ 
a2bn 

\ anb\ anb2 • • • anbn ) 

We have seen that a dyad ab can map a vector c into another vector 
v through the dot product operation given in (2.7.6). This idea carries 
through to general tensors of the second rank, of which dyads are examples. 
If A is a tensor of second rank and x is a vector, then A can map x into 
an image vector y according to 

A - x . (2.7.9) 
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It is easy to check that the individual components of A = aijeiej are given 
by 

CLij — Cj * -r\- * Gj, 

and that (2.7.9) corresponds to 

( y i \ 

V2 

( on ai2 • • • a\n \ 
0-21 0,22 • • • 0,2n 

/ * l \ 

X2 

\ynJ V / \x„ J 

A dot product operation known as pre-multiplication of a tensor by a vector 
is also considered: the quantity y • A is defined by the requirement that 

(y • A) • x = y • (A • x) 

for all vectors x. This can be also obtained as a consequence of the formal 
definition of left-dot-multiplication of a vector by a dyad: 

a • be = (a • b)c. 

We see both dot product operations (pre-multiplication and post-
multiplication) applied to the definition of the important unit tensor E, 
which satisfies 

E x = x - E = x (2.7.10) 

for any vector x. It is easy to find the components of E from this definition. 
We start by writing E = e^eiej and then apply (2.7.10) with x = ek to 
get 

Pre-multiplying by e m we obtain 

&ijOmiUjk = = Omk 

since e m • ej = 5mi, ej • e^ = 6jk, and em • ek = 5mk. Hence emk = 5mk and 
we have 

-i-J — OijQiQj — GjCi-
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Of course, the corresponding matrix representation is the n x n identity 
matrix 

7 = 

/ 1 0 0 
0 1 0 
0 0 1 

0 
0 

V o o o ••• i / 

Thus E is equivalent to the unit matrix. 
The strong parallel that exists between tensors and matrices leads us to 

apply the notion of transposition to tensors of the second rank. Accordingly, 
if A = Ojjejej then we define 

It is easy to see that 

A = a^iGj — dijGjei. 

A • x = x • A1 

for any vector x and any tensor A of the second rank. It is even more 
obvious that ( A T ) T = A. If A is the matrix representation of A, then AT 

represents A T . 
A dot product between two tensors is regarded as the composition of the 

two tensors viewed as operators. That is, A • B is defined by the equation 

( A - B ) - X E E A - ( B - x ) . 

A tensor B of the second rank is said to be the inverse of A if 

A B = B A = E. 

In this case we write B = A - 1 . 
A central aspect of the study of tensors concerns how their components 

transform when the frame is changed. Although such frame transformations 
will not play a significant role in our discussion, the reader should under
stand that to express a tensor in another frame we would simply substitute 
the representation of the old basis vectors in terms of the new ones. As a 
simple example we may consider the case of a tensor of rank one: a vector. 
Let the components of x relative to the frame ê  be Xi so that x = x^i. 
If a new frame e» is introduced according to the set of linear relations 
e* = Aij&j, then x = XiAijUj and we see that x = Xjhj where Xj — AtjXi. 
The point is that we are not free to assign values to the Xj in any way we 
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wish: once the frame transformation is specified through the Aij, the new 
components x, are completely determined by the old components Xj. The 
situation with tensors of higher order is the same. 

Note that the correspondence between tensors and matrices is one-to-
one only for a fixed basis. As soon as we change the basis, the matrix 
representation of a tensor changes by strictly defined rules. For example, 
if we take a non-Cartesian basis in space, the matrix representation of the 
tensor E is not the unit matrix, and thus E is not something we could call 
the unit tensor. Rather, it is known as the metric tensor. 

Elements of calculus for vector and tensor fields 

Now we consider how differentiation is performed on tensor and vector 
functions using tensor notation. Let us begin with a function y(£) = Vi{t) e{. 
Since e, does not depend on t, differentiation of y(t) with respect to t 
reduces to differentiation of the component scalar functions yi(t): 

y'(t)=y'i(t)ei. 

Similarly, the differential of a vector function y(i) is 

dy(t) = dyi(t)ei. 

Now suppose we wish to differentiate a composite function f(y)(t) with 
respect to t. Writing this as /(y»(i) e*) or f(yi(t),... ,yn{t)), we have by 
the chain rule 

ftf(y(t)) = ftf(yi(t),...,yn(t)) 

_ v ^ df{yi(t),...,yn{t)),u^ 

- h °* m 

Let us write out the right-hand side of (2.7.11) in vector form. For this 
we introduce V, a formal vector of differentiation (known as the gradient 
operator): 
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(We show the subscript y on V to indicate the vector whose components 
participate in the differentiation. The subscript can be omitted if this is 
clear from the context.) When we apply Vy to a function / (y) we get a 
vector 

Vy/(y) = | > ^ - = ^ - e , 

Let us dot multiply V y / (y( i ) ) by y'(t) = y'At)ej. Remembering that 
ej • e, = Sij, we get 

V y / (y( i ) ) -y (t) = ^ ei-y^tjej = 3/j-(*)ftj = &(*). 

Since the right-hand side of this coincides with that of (2.7.11), we have 

^/(y(*)) = vy/(y(t))-y'(0-

The differential of /(y(t)) is given by 

4f (y(*)) = V y / (y( t ) ) • dy(t). (2.7.12) 

Using this formula or, equivalently, the first-order Taylor approximation, 
we get 

f(y(t) + Ay(t)) - f(y(t)) = Vy/(y(*)) • Ay(i) + o(||Ay(t)||) 

where Ay(£) is a small increment of y(£). 
Now we would like to present the first-order Taylor approximation of 

the increment of a vector function f that depends on a vector function y(t). 
We assume that f takes values in the same space as y(i) and thus can be 
represented as f = fi ê  where fi = fi{y(t)). For this we find the differential 
o f f (y ( t ) ) a ty ( t ) : 

df(y(t)) = d ( / j ( y ( t ) ) e j ) = <^(y(t))e j-

= Vyfj(y(t))-dy(t)ej 

df3(y(t)) et -dyk{t)ekGj 
dyi 

The right-hand side can be represented as 

dyi 
i)-dyk(t)ek or dyk(t)ek- (dfi^^aeA . (2.7.13) 
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We see that in both brackets there is a sum of dyads so both of them are 
functions whose values are tensors of the second rank. A formal application 
of V y to f (y(i)) gives 

Vyf(y(t)) = * A / . ^ e , = ^ P e , ; e 3-

Thus Vyf(y(i)) is the expression in brackets of the second equation (2.7.13) 
and the differential can be represented as 

df(y(t)) = dy(t) • Vyf (y(t)). (2.7.14) 

The term in the bracket of the first equation of (2.7.13) differs from the 
corresponding term of the second equation by a transposition of the vectors 
e; and ej so it can be written as (Vyf (y(i))) and thus the differential can 
be presented in the other form 

df(y(*)) = (V y f (y( t ) ) ) r -dy( t ) . (2.7.15) 

The expression Vyf(y(i)) is called the gradient of f. Let us see how it 
appears in more common matrix notation. We have said that a second rank 
tensor can be represented by a matrix of coefficients; in this representation 
the index i in the first position denotes the ith row of the matrix whereas 
the second index j denotes the j t h column. Thus the matrix representation 
of the gradient of the vector function ^ e»ej is 

/ dh df2 
dyi dyi 

dfn\ 
dyi 

dfi dh . __ dU 
dy2 dy2 dy2 

Ok ih. ... dJ^ 
\ dyn dyn dyn ) 

Its determinant is the Jacobian of the transformation z = f (y). 
Now, using the formula for the differential (2.7.14) (or (2.7.15)) we are 

able to present an increment of a composite vector function f (y(i)) under 
the increment Ay(t) of the argument: 

f(y(t) + Ay(t)) - f(y(t)) = Ay(t) • Vyf(y(t)) + o(||Ay(t)||). 

Let the components of a tensor A(i) = a,ij(t)eiej be continuously dif-
ferentiable functions of t. Then by the rule for differentiating a matrix we 
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have 

dA(t) da,ij{t) 

~KT = ~dTeiGj-
The derivative of the dot product of two second-rank tensors obeys a for
mula similar to the ordinary product rule: 

l ( A ( t ) . B ( t ) ) = ( | A ( t ) ) . B W + A ( t ) . ( | B ( * ) ) . 

A similar formula holds for the dot product of a tensor by a vector: 

(A( t ) .y( t ) ) ' = A ' ( t ) - y ( t ) + A ( t ) . y ' ( t ) . 

If one factor does not depend on t then it can be removed from the symbol 
of differentiation: 

(A-B( t ) ) ' = A-B ' ( t ) . 

Fundamental solution of a linear system of ordinary differ
ential equations 

Consider a linear system of ODEs 

y[(t) = an(t)yi(t) + a12(t)y2{t) + 

y'2{t) = a2i(t)yi(t) + a22(t)y2(t) + 

y'n(t) = anl(t)yi{t) + an2(t)y2(t) + 

In terms of the tensor function A(i) = dij(t)eiej and the vector y(i) = 
yi(t)ei this system can be rewritten as 

y'(i) = A(t) • y(t). (2.7.16) 

Definition 2.7.1 A tensor function <&(£, s) in two variables t, s is called 
the fundamental solution7 of (2.7.16) if it satisfies two conditions: 

(i) #(£, s) is a solution of (2.7.16) in the first variable t: 

^ * ( t , s ) = A(t) •*(*,«) (2.7.17) 

7 The function <&(£, s) is also known as the fundamental tensor or fundamental matrix. 

\-aln{t)yn(t), 

••• + a2n(t)yn(t), 

\-ann(t)yn(t). 
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(here we use the symbol for the ordinary derivative, thinking of s as a 
fixed parameter), 

(ii) For any s, 

# ( s , s ) = E . (2.7.18) 

This fundamental solution exists for any finite t, s if the tensor A(t) is 
continuous. The problem of finding it consists of n Cauchy problems for the 
same system of equations with n initial conditions given at t — s. Hence 
the fundamental solution is determined uniquely. 

Now we would like to extend the results for the fundamental solution 
of a single linear ODE to the general case. We present them in a similar 
manner. 

Property 2.7.1 A solution of (2.7.16) satisfying the initial condition 

y(s) = yo is 

y(t) = *(*,s)-yo-

Indeed, dot-multiplying vector-equation (2.7.17) by yo from the right we 
see that &(t,s) • y0 satisfies (2.7.16). By (2.7.18) this solution satisfies the 
initial condition y(s) = yo-

Property 2.7.2 For any t, s and r we have 

#( i , s ) = * (^ , r ) -# (T , s ) . (2.7.19) 

A consequence of this property and relation (2.7.18) is the equation for the 
inverse 

®-\t,s) = $(s,t) (2.7.20) 

which follows when we write out a particular case of (2.7.19), 

E = $ ( i , i ) = * ( t , s ) - $ ( s , t ) . 

Proof. Let us prove (2.7.19). Dot multiply (2.7.17) by ${S,T) from the 
right. On the left we have 

( | * ( i , S ) ) . * ( a , r ) = | ( * ( t ) S ) - * ( S ) r ) ) 

since <&(S,T) does not depend on t; on the right we have 

A(i) • *( t , s) • # ( s , r) = A(i) • (*(t, s) • # ( s , r ) ) . 
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So #(£, s) • # ( s , r ) satisfies d*b/dt = A(t) • \I> with parameters s, r . Putting 
£ = s in this solution we get 

* ( t , s ) - * ( s , r ) | t = a = * ( S , S ) - * ( S , T ) = * ( s , r ) . 

So <&(£, s) • 4>(s, r ) coincides with <&(t, r) at £ = s; by uniqueness of solution 
to the Cauchy problem, they coincide for all t. To complete the proof it 
remains to interchange s and r . • 

Property 2.7.3 The equation 

JU(M) =-$(M) • A(*) 

holds. 

Proof. It is easily verified that the derivative of the inverse to a differ-
entiable tensor function \&(i) is given by 

(* - 1 (* ) ) ' = - * - 1 ( * ) • *'(*) • * - 1 ( * ) - (2.7.21) 

Hence by (2.7.20) we have 

d*(t,8) =d(*-\8,t)) 
ds ds 

= - * - ( M ) - ^ - * - 1 ( M ) 

= _ * ( t > a ) . * * M . * M . 

Finally, since s is the first argument in the derivative on the right we can 
change this derivative using (2.7.17): 

^ - i = - # ( t , s) • A(s) • #(s, t) • # ( t , s) = - # ( t , s) • A(s). 

Property 2.7.4 The solution of the Cauchy problem 

y ' ( t )=A(t ) .y ( t )+g( t ) , y(0)=0, 

with a given vector function g(t) is 

y( f )= f &{t,s)-g{s)ds. (2.7.22) 
Jo 
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Proof. Let us find the derivative of y(i) given by (2.7.22): 

/"' d 
= * ( t , t ) -g( t ) + y ^ * ( i , s ) - g ( s ) d * 

= E - g ( t ) + /" A ( i ) . * ( i , s ) - g ( a ) d * 

= A(t)- / #( i ,a)-g(s)da + g(t) 
./o 

= A ( t ) . y ( t )+g ( t ) . 

2.8 General Terminal Control Problem 

We have stated the general problem of terminal control. Our understanding 
of the scope of the optimal control problem has changed, however, so it is 
appropriate to reexamine the setup of the terminal control problem. 

The object of terminal optimal control is described by a vector function 
of time y(i) with values in Euclidean vector space En whose behavior is 
determined by a system of ODEs (or a vector ODE) 

y ,(t) = f(y(t),u(t)) (2.8.1) 

The vector function f(y(i), u(£)) must be such that when the control func
tion u(t) is given and admissible (i.e., belongs to the class U), then the 
Cauchy problem for (2.8.1) supplemented with initial conditions has a 
unique continuous solution on a finite time interval [0, T\. Thus the history 
of the object determines uniquely its present state. Systems of this type 
are called dynamical systems. 

The set U of admissible controls consists of vector functions u(i) tak
ing values in the Euclidean space Em that are piecewise continuous in t. 
In particular, U can consist of functions that take values in a finite set of 
vectorial values. The former is important when the control function de
scribes several fixed positions that are taken by some governing device; it 
describes, say, the effect of some additional device that can exist only in 
"on-off" states. 

Everything said so far in this section applies to all optimal control prob
lems. The distinguishing feature of terminal control is the specification of 
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yfoj = j . 

u(t) 

v >(t 1 e/„ ft 1 . . /* II 
y (V — M J , ( V > U ( W 

G(y(W 

Fig. 2.3 A controlled object described by y ' = / ( y , u): the input is y(0) = yo, the 
control vector is u, and the output is G(y(T)). 

the initial condition 

y(o) = y0 

and the form of the objective functional 

./(ii) = G(y(T)). 

(2.8.2) 

(2.8.3) 

Thus we can consider terminal control as the problem of finding the minimal 
output value (2.8.3) when the input is determined by the initial vector y0 

and the control function u(i) and the output is G(y(T)). See Fig. 2.3. Our 
objective can be formulated as 

G(yCO) mm . 
u(t)eu 

(2.8.4) 

This is known as the main setup of the problem (2.8.1)-(2.8.4). 
We can reduce various other other optimal control problems to this 

form. 

Problem. For a system described by (2.8.1) whose initial state is given by 
(2.8.2), among all the admissible control vectors u e M find such for which 
an objective functional 

/ g(y(t),u(t))dt 
Jo 

takes its minimum value. 

The reduction of this problem to the main form of the terminal con
trol problem is done by introducing the additional component yn+i for y. 
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Namely, we introduce an additional scalar equation 

y/„+i(*) = s(y(*),u(«)), i^+i(o) = o. 

Now it is clear that 

yn+i(T)= f g(y{t),u(t))dt (2.8.5) 
Jo 

and thus the objective functional from (2.8.3) takes the form 

J(u)=yn+1(T). 

We can consider another version of the terminal control problem when 
it is necessary to minimize the objective functional 

f g(y(t),u(t))dt + G(y(T)) 
Jo 

for the same system described by (2.8.1)—(2.8.2). Then the same additional 
component for y given by (2.8.5) reduces the problem to the necessary 
form. The objective functional now is 

J ( u ) = y n + 1 ( T ) + G(y(T)). 

Let us consider the main form of the terminal control problem (2.8.1)-
(2.8.4) using an extension of the procedure for the simplest problem of 
optimal control. Much of the reasoning for the latter is simply reformulated 
to go from the scalar to the vector version. For the simplest problem, the 
main step involved finding the main part of the increment of J(u) under 
a needle-shaped increment of a fixed control function. We shall do this 
here also. The next step involved establishing the condition under which a 
control function would be optimal for the problem. This led to Pontryagin's 
maximum principle. We shall extend this to the general problem. Finally 
we shall discuss how to use the formula for the increment of the functional, 
as well as the maximum principle, to find an optimal solution. 

Let t = s be a point of continuity of a control function u(i). Giving u(£) 
a needle-shaped increment (i.e., a vector whose components are all needle-
shaped functions with perturbations in (s — e,s]) we get a new control 
defined by 

u* ( i ) = {uW' t$(8-e,a], 
[v , t e (s — e,s]. 
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We can continue to refer to Fig. 2.1. We can also refer to Fig. 2.3 for a 
representation of the function y* (t) that satisfies the equation 

(y*(t))' = f(y*(t),u*(t)) (2.8.6) 

and the same initial condition y(0) = yo. We suppose that at least for all 
positive e less than some small fixed number eo, the incremented control 
function u*(i) is admissible. 

The main part of the increment Jin*) - J(u) , linear in small e, is 
determined by 

Theorem 2.8.1 Let t = s be a point of continuity of a control function 
u(t). The increment of J(u) is 

J(u*) - J(u) = e<5SjV J(u) + o(e) (2.8.7) 

where 

<5S)VJ(u) = * ( s ) • [f(y(s),u(s)) - f(y(s), v)] (2.8.8) 

and * ( s ) is a solution of the following Cauchy problem (in the reverse 
time): 

* ' ( s ) = -V y f (y ( S ) ,u(s ) ) • * ( s ) , * (T) = -V y G(y(T) ) . (2.8.9) 

<5SiV J(u) is called the variational derivative of the second kind of the func
tional J(u). 

Proof. Take e > 0 so small that all points of [s — e, s] are points of con
tinuity of u(£) and the corresponding incremented control functions u* (£) 
are admissible. We divide the proof into several steps. 

Step 1, the main part of the increment ofy(t). On [0, s — e] the control 
functions coincide. The initial conditions for y(t) and y*(t) coincide as 
well, so on this segment we have y*(£) = y(t). 

Let us find the increment of y(t) for t G [s — e, s]. Subtracting term by 
term (2.8.1) from (2.8.6) we have 

(y*( t ) ) , -y ' (*) = f (y* ( t ) , v ) - f (y ( t ) , u (0 ) . 

Denoting Ay(t) = y*(t) - y(t) we get 

Ay'(t) = f (y(t) + Ay(t), v) - f (y(t), u(i)). (2.8.10) 
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This equation, which holds on (s — e,s], is supplemented by the "initial" 
condition 

A y ( s - e ) = 0 (2.8.11) 

which follows from the above coincidence of y(t) and y*(i). Let us reduce 
the Cauchy problem (2.8.10)-(2.8.11) for Ay(i), integrating (2.8.10) with 
respect to the time parameter: 

Ay(t) - Ay(s - e) = f [f(y(r) + Ay(r) ,v) - f(y(r),u(r))] dr. 
Js — E 

By (2.8.11) this reduces to 

A y ( t ) = / [f(y(T) + A y ( r ) , v ) - f ( y ( r ) , u ( r ) ) ] d r . (2.8.12) 
J s~ e 

Since we assume f (y, u) to be continuous and thus bounded, the integral 
on the right of (2.8.12) is of order e and so is Ay(t). Thus replacing in 
the integrand the quantities y(r) and u(r) by y(s) and u(s) respectively, 
and placing Ay(r) = 0, we introduce in the value of the integral an error 
of order o(e) for t G [s - e, s]. Hence (2.8.12) reduces to 

Ay(*)= / [ f (y(s ) ,v) - f (y(s ) ,u( S ) ) ]dr + 0(e), 
J S — £ 

which can be rewritten as 

Ay (i) = (t-s + e)[f (y(s), v) - f (y(s), u(s))} + o(e), 

and thus on this small segment [s — e, s] the difference Ay(i) changes almost 
linearly from zero, taking at t = s the value 

Ay(s) = e [f (y(S), v) - f (y(s), u(S))] + o(s). (2.8.13) 

This is the initial value for the solution Ay(t) on [s, T] of the equation 

Ay'(i) = f (y(i) + Ay(i), u(t)) - f (y(t), u(t)) (2.8.14) 

(we recall that on this interval u* (t) = u(^) and it is considered to be known 
at this moment). Linearizing the right-hand side of (2.8.14) with respect 
to Ay(t) (taking into account (2.7.15)) we have 

Ay'(i) = (Vyf(y(t)Mt)))T • Ay(t) + 0(| |Ay(t)| |). (2.8.15) 
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Because of smallness of the initial condition of Ay(t) at t = s and the form 
of (2.8.15) we expect the solution of the corresponding Cauchy problem on 
the finite interval (s, T] to be of order e and, up to terms of order higher 
than e, equal to the solution of the following Cauchy problem: 

5y'(t) = (Vyf (y(i), u(t)))T • 5y(t), (2.8.16) 

Sy(s) = e [f (y(s), v) - f (y(s), u(s))], (2.8.17) 

which is the linearization of the complete initial problem (2.8.14), (2.8.13). 
By the linearity of this problem its solution is proportional to e. 

To find the main part of the increment Ay(T) it remains to solve the 
Cauchy problem (2.8.16)-(2.8.17). This can be integrated (often numer
ically) but we will use the notion of the fundamental solution from the 
previous section. 

Let us denote A(£) = (Vyf (y(£), u(£)))T and leave the notation of § 2.7 
for this fundamental solution, which satisfies 

| * ( i ) S ) = A(t) •*(*,*) 

and the "initial" condition * ( s , s) = E for all s. By Property 2.7.1 of § 2.7 
the solution to (2.8.16)-(2.8.17) is 

6y(t) = e #( t , a) • [f (y(s), v) - f(y(s), u(s))] 

and thus, assuming "good" behavior of Ay(£) we have 

Ay(T) = £ * ( T , s ) • [f(y(s),v) - f(y(*),u(s))] + o{e). (2.8.18) 

Step 2, the main part of the increment of J(u) = G(y(T)). We again 
use the formula of the differential (2.7.12) for linearization of the increment 
of J(u) with respect to Ay(i): 

AJ(u) = J(u*) - J(u) 

= G(y(T) + A y ( T ) ) - G ( y ( T ) ) 

= V y G ( y ) | y = y ( T ) • Ay(T) + o(|Ay(T)|). 

Using (2.8.18) we get 

AJ(u) = e V y G ( y ) | y = y ( T ) • * (T,s ) • [f(y(s),v) - f(y(s),u(s))] + o(e). 

This is the required formula. It remains to represent it in the form asserted 
by the theorem. 
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Step 3, the final step. Let us introduce a vector function *J?(s) as 

*(*) = - V y G ( y ) | w = y ( T ) • * ( ! > ) . 

With this notation for AJ(u) we do have the representation (2.8.7)-(2.8.8), 
so it remains to demonstrate that * ( s ) satisfies (2.8.9). The second relation 
of (2.8.9) is a consequence of the equality &{T,T) = E; indeed, 

* ( T ) = - V y G ( y ) | y = y ( T ) • *(T,T) = -VyG(y)\y=y{T). 

Let us show that it satisfies the first equation of (2.8.9) as well. The 
derivative of *f?(s) is 

ds ds 
VyG(y) |y = ! / ( T ) • 9{T,8)\ = - V y G ( y ) | w = y ( r ) • T*(T,s) 

Let us now use the equation for the derivative with respect to the second 
argument of the fundamental solution, which is given by Property 2.7.3: 

^ = - V y G ( y ) | y = w ( T ) - ( - * ( r > f l ) . A ( 8 ) ) 

= -(-VyG(y)\y=y(T)-*(T,s)).A(8) 

= - ¥ ( a ) • A(s) = - ( A ( s ) ) r • * ( s ) . 

Remembering the above notation for A(s) we complete the proof. D 

2.9 Pon t ryag in ' s M a x i m u m Principle for t h e Terminal Op
t imal P r o b l e m 

First we would like to discuss the statement of Theorem 2.8.1. When we 
seek a response of an object described by the problem 

y '( t )=f(y(*) ,u(*)) , y ( 0 ) = y o , (2.9.1) 

to a needle-shaped disturbance of the control function u(i) we obtain a dual 
problem 

¥ ' ( s ) = -V y f (y(*) ,u(S ) ) •¥(*) , (2.9.2) 

* ( T ) = -V y G(y(T)) . (2.9.3) 

The dual equation (2.9.2) plays a role like that of the Euler equation of 
the calculus of variations, and the condition (2.9.3) is the condition of 
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transversality. Together (2.9.1)-(2.9.3) compose a boundary value problem 
having a unique solution when u(t) is given. This splits into two "initial 
value problems" for y(t) and *&(s). For problems other than the problem 
of terminal control, other types of boundary conditions are given but the 
equations yielding a response to a needle-shaped disturbance are the same. 
Let us introduce an equivalent form of the equations for this boundary value 
problem. We introduce a scalar function in three variables y, \&, and u(t), 
called Pontryagin's function 

tf(y,¥,u) = f ( y , u ) - * . 

Simple calculation demonstrates that 

V y F ( y , * , u ) = V y f ( y , u ) . * and V * t f ( y , * , u ) = f(y,u) 

where the second relation is a consequence of the equality 

d _ 
Vx^ ^ Q{"7^ y^j^j) = = &i®i — •*-/" 

It follows that (2.9.1) and (2.9.3) can be written as 

y'(t) = V * H(y(t), ¥(*), u(*)) and ¥'(*) = - V y f f (y(t), *(*) , u(i)). 

This is the Hamiltonian form. 
In terms of Pontryagin's function the second kind derivative of J(u) 

(2.8.8) can be written as 

<5S,V J(u) = H(y(s), * ( s ) , u(s)) - H(y(s), ¥(*) , v). (2.9.4) 

Now we can formulate the Pontryagin's principle of maximum. 

Theorem 2.9.1 Let u(t) be an optimal control function at which J(u) 
attains its minimal value on U, the set of all admissible control functions 
and y(t) and ^f(t) be a solution of the boundary value problem (2.9.1)-
(2.9.3). At any point t = s of continuity of u(t) the Pontryagin function 
H(y(t),if?(t),v) considered as a function of the third argument v takes its 
maximum value at\ = u(s). 

Proof. Since J(u) attains its minimum at u(t) then for any admissible 
control function u*(t) we have 

J(u*) - J (u) > 0. 
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In particular it is valid for an admissible u* (t) that is a disturbance of u(t) 
by a needle-shaped vector function 

\ v , te(s-e,s], 

and thus, for sufficiently small e because of (2.8.7) and (2.9.4) we have 

J(u*) - J (u) = e (H(y(s), * (* ) , u(s)) - H(y(s), * ( S ) , v)) + o(e) > 0. 

Prom this it follows that H(y(s), * ( s ) , u(s)) - i7(y(s), * ( s ) , v) > 0. D 

Pontryagin's principle of maximum gives us an effective tool to check 
whether u(i) is a needed control function at which J(u) attains its mini
mum, but it does not show, except for quite simple problems, how to find 
this. However, (2.8.7) is the background of various numerical methods used 
to find this minimum. We shall discuss them in brief. 

The formula (2.8.7) for the increment of J(u) , which can be rewritten 
as 

J (u) « J(u*) - e 6s,vJ(u), (2.9.5) 

generates an iterative procedure that begins with selection of a finite num
ber of the time instants ( r i , . . . , r r ) at which one may introduce needle-
shaped disturbances for finding a more effective control function. Next one 
must find an instant T, and a corresponding admissible value of v, which 
we denote by Vj, at which the maximum of the numerical set 

{£Tl>vJ(u),...,<5Tr>vJ(u)} 

is attained. Denoting the control parameters of the previous step as u ^ (t) 
and uW*(£) where u^*(t) is just determined, one must choose the value 
of e, denoted by e*, at which (2.9.5) provides a sufficiently precise approxi
mation. Then the next approximation of the value of J(u) is given by the 
formula 

J(u<i+1>) = J ( u « ' ) - e ^ i l V i J ( u « ) . 

Versions of this procedure differ in their methods of determining each step, 
in particular the points r». They are called the methods of coordinate-by-
coordinate descent. 

A modification is called the group descent procedure. We have found 
the main linear part of the increment of J(u) under a needle-shaped dis
turbance of u(t) at t = s, which is characterized by the pair of parameters 
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£, v. This means that if u(i) is disturbed by a finite set of N such needle-
shaped variations, the ith of which is lumped at a point Si of continuity 
of u(t) and is characterized by the pair £», v*, then denoting by u**(t) the 
corresponding control function we get the main part of the increment as 
the sum of increments of J(u) due to each of the needle-shaped increments 
of u(t): 

N 

J(u**) - J (u) = Y,£i[ff (y(*)> * (* ) . "(*)) - H(y(s), * ( s ) , v,)] 
i = i 

+ o(max(£i , . . . ,e J V)) . (2.9.6) 

Then we can decrease the value of J(u) on the next step of approximation 
using a group of needle-shaped increments and the formula (2.9.6). 

2.10 Generalization of the Terminal Control Problem 

Let us consider a generalized terminal control problem whose setup coin
cides with that of the usual problem except for the form of the objective 
function (functional). This set up is 

Definition 2.10.1 From among the piecewise continuous control func
tions u(i) € U on [0, T], find one that minimizes the functional I ( u ) , 

I (u ) —• min, 
ueu 

when X(u) is defined as 

I ( u ) = G(y(s i ) ,y(s 2 ) , . . .,y{sN)), 

G(y(si) ,y(s2) , . . . ,y(s]v)) being a function continuously differentiable in 
all its variables, 0 < s\ < S2 < • • • < s^ = T some fixed points of time, 
and y(t) satisfying the equations 

y'(t) = f(y(*),u(*)), y(0) = yo-

Such a form of the objective function can appear, for example, if the 
objective functional contains an integral depending on y(t) which is dis-
cretized according to some simple method such as Simpson's rule or the 
rectangular rule. To proceed further we need some additional material. We 
shall obtain a nonstandard Cauchy problem and then find a way to present 
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it in a form that resembles the usual form for such a problem. For this we 
digress briefly to discuss the Dirac <5-function. 

The (5-function concept was originated by physicists and used for many 
years before being given a rigorous footing (called the theory of distri
butions) by mathematicians. Although rigor has certain advantages, the 
heuristic viewpoint of the early physicists will be adequate for our pur
poses. This viewpoint rests on the notion that 5(t) is a function of the 
argument t, taking the value zero for t 7̂  0 and an infinite "value" at t = 0 
such that 

+oo 

5{t)dt= 1. 
-oo 

Now from a mathematical viewpoint we are in trouble already because it 
can be shown that there is no such function. But we nonetheless proceed 
formally with the understanding that every step we take can be justified 
rigorously (with tremendous effort and with full chapters of extra expla
nation which, unfortunately, would not lend clarity to the topic for our 
purposes). 

The (5-function is a generalized derivative of the step function h(t) given 

by 

[o, t<o, 

and we shall exploit this property. The introduction of the generalized 
derivative uses the main lemma of the calculus of variations and the formula 
for integration by parts. Let <p(t) be a function infinitely differentiable on 
(—oo, +oo) and with compact support (the support of <f>(t) is the closure of 
the set of all t for which tp{t) ^ 0). Let us denote this class by V. For any 
differentiable function f(t) the formula for integration by parts holds: 

/

+ o o r+OD 

f(t)<p'(t)dt = - f'(t)tp{t)dt. 
-oo J — oc 

The main lemma of the calculus of variations states that if the equality 

/

+oo r+oo 

f(t)<p'{t) dt = - g(t)<p(t) dt (2.10.1) 
-oo J — oo 

holds for any (p(t) € V then g(t) = f'(t). This is valid for a differentiable 
function f(t), but the same equation introduces the generalized derivative of 
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an integrable function f(t): a function g(t) is called the generalized deriva
tive of f(t) if (2.10.1) holds for any (p(t) € V. The generalized derivative 
is denoted by the usual differentiation symbols. The main lemma of the 
calculus of variations (more precisely, its variant) provides uniqueness of 
definition of the generalized derivative. Let us check that h'(t) = 5(t) in 
the generalized sense. Indeed, 

/

+ o o /»oc /»oo 

h(t)ip'(t) dt= h(t)ip'(t) dt = ip'(t) dt = -tp(0) 
-oo JO JO 

and by the definition of (5-function 
f + OO 

/ 
J —( 

6(t)tp(t)dt = ip(0). 

Thus for the pair h(t),5(t) the definition of generalized derivative is valid 
and so h'(t) = 5(t). Using this property we can write out the Cauchy 
problem 

y'(t)=g(t,y(t)), 1/(0) = i/o, (2-10.2) 

in an equivalent form 

y'(t) = f(t,y(t))+y06(t), 3/(*)|t 0 = 0. (2.10.3) 

Indeed, integration of (2.10.3) with respect to t (the starting point is t = 
—0) implies the equation 

y(t)= f f(s,y(s))ds + y0h{t), 
Jo 

which is equivalent to (2.10.2). 
Now let us formulate the main theorem of this section, in which we keep 

the notation of § 2.8 for u*(i) and y*(i). 

Theorem 2.10.1 Let t = s be a point of continuity of a control function 
u(t) that is different from s\, S2, . . . , SN =T. The increment of X(u) is 

I(u*) - I (u ) = e8StVl{u) + o{s) 

where 

5StVX(u) = * ( s ) • [f (y(s), u(s)) - f (y(s), v)] (2.10.4) 
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and^f(s) is a solution of the following Cauchy problem (in the reverse time) 

*'(*) = - V y f ( y ( s ) , u ( S ) ) . * ( S ) 
JV 

+ ^2s(si - s )V y ( S i ) G(y(s 1 ) ,y (s 2 ) , • • • ,y(sjv))> 
i = l 

y(T + 0) = 0. (2.10.5) 

Comparison with Theorem 2.8.1 shows that the current theorem differs 
only in the form of the problem for * ( s ) . 

Proof. It is clear that y*(t) for this problem coincides with that of § 2.8, 
so we can use the corresponding formulas of that section. In particular, for 
t > s the main part of the increment Ay(t) of the corresponding solution 
y(i) on (s, T], under the needle-shaped increment of the control vector u, 
is 

5y(t) = e *(*,*) • [f(y(s),v) - f (y( S ) ,u (s ) ) ] . (2.10.6) 

So we immediately go to the increment of the goal function. First we use the 
formula for the complete differential to get the main part of the increment 
of J (u ) = G(y(s i ) ,y ( s 2 ) , . . . ,y(sjv)), which is 

A I ( u ) = I ( u * ) - I ( u ) 

= G(y(si) + Ay(si), y(s2) + Ay(a2), • • •, y(sjv) + Ay(S j v)) 

- G{y(sl),y(s2), • • • ,y(sN)) 
N 

= Yl V y ( ^ i ) G ( y ( s i ) ' y( s2), • • •, y(sw)) • Ay(s i ) 

+ o (mzx\\Ay(Sj)\\) (2.10.7) 

To implement (2.10.6) we rewrite it in the form 

6y(t) = e *( t , s) • [f (y(s), v) - f (y(s), u(s))] h(t - s) 

so it becomes valid for use in (2.10.7) for all t G [0,T] when the interval 
[s — e,s] does not contain any Si (assumed). Then the increment of J (u ) 
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can be rewritten as 

AJ(u) = J ( u * ) - Z ( u ) 

= £ I Yl Vy(si)G(y(si),y(s2), • • • ,y(sN)) • *(s i (s)h(si - s) \ 

• [ f (y ( S ) , v ) - f (y ( S ) , u ( S ) ) ]+ 0 ( e ) . 

Denoting 

N 

* ( s ) = ~ E V y ( s i ) G(y( S l ) , y ( a 2 ) , . . . , y(sN)) • * ( * , *)&(* - s) (2.10.8) 
i = i 

we get, as in § 2.8, 

5SlVI(u) = * ( s ) • [f(y(s),u(s)) - f (y ( s ) ,v ) ] 

and for the increment of objective functional 

J(u*) - I (u ) = £ (5s,vJ(u) + o(e). 

Note that the presence of/I(SJ — S) in the sum of the definition (2.10.8) means 
that at s — Si the value of * ( s ) has some step change for an additional 
term in the sum. 

It remains only to check the validity of (2.10.5). When s > SN = T 
we get \&(s) = 0 so the second of (2.10.5) holds. To show that the first is 
valid let us find the derivative of * ( s ) . Taking into account Property 2.7.3 
which in our terms is 

£*(si,s) = - * ( * , * ) • (Vyf(y(S) ,u(s)))T 

we get 

^ 7 ^ = £ Vy(Si)G(y(Sl),y(s2),..., y(sN)) 
i=\ 

• h(Si - 8)*(8i,8) • (Vyf(y(S),u(s)))T 

N 

+ H ^y(sl)G(y(s1),y{s2),..., y(sjv)) • * ( S J , s)6(si - s) 
i = l 

= - * ( , ) - ( V y f ( y ( S ) , u ( S ) ) ) T 

N 

+ 5 2 vy(«0G(y(s i ) .y(s2), • • •, y(sAf))(5(si - s). 
1 = 1 



Elements of Optimal Control Theory 145 

In the last transformation we used 3>(si, s)6(st — s) = E8(si — s). O 

The form of Pontryagin's maximum principle for the generalized termi
nal control problem is the same as in the previous section. We leave its 
formulation to the reader. 

This kind of generalized terminal control problem is used in practice and, 
as a rule, requires numerical solution of the problems when the formula for 
the increment (2.10.4) of the goal functional is used. 

2.11 Small Variations of Control Function for Terminal 
Control Problem 

The form of the increment of the objective functional for the generalized 
terminal control problem provides a hint that the conjugate equations and 
similar material should enter not only for needle-shaped variations of the 
control function, but for any small variations. We will see that this is really 
so, and for this case we will find the expression for the increment of the 
objective functional under the increment of control vector of other type. 
We reconsider the terminal control problem described by the dynamical 
system 

y'(t) = i(y(t),u(t)), y ( 0 ) = y o . 

We wish to find the increment of the objective functional J(u) = G(y(T)) 
under a small increment Au(i) of the control function u(i). 

We demonstrated that one of the problems of the calculus of variations 
was covered by the setup of a problem of optimal control, but did not use 
the type of variations used in the calculus of variations until now. Here we 
will demonstrate how it can be done. 

Let us define v(t) = u(t) + Au(£) and require that v(i) is admissible. 
Smallness of Au(t) means that supc0)T] ||Au(£)|| is sufficiently small. We 
suppose that the changed value y* (t) satisfying the Cauchy problem 

(y*(*))' = f(y*W,v(<)), y*(o) = y0, 

is such that Ay(t) — y*(t) — y(t) is also small enough, that is 
max[0jT] l|Ay(£)|| is small. 

Now we would like to find the increment of J(u) under such a small 
admissible increment of u(i). The answer is given by 
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Theorem 2.11.1 Suppose thatsup[0Tj ||Au(i)|| = e. Then the increment 
of J (u) is 

J(u*) - J(u) = 5J{u) + o(e) 

where 

5J(u) = [ * ( t ) • [f (y(t), u(t)) - f (y(*), v(t))] dt 
Jo 

and ^f(s) is a solution of the following Cauchy problem (in the reverse 
time): 

* ' ( s ) = -V y f (y ( s ) , VL(S)) • * ( s ) , * ( T ) = -V y G(y(T) ) . (2.11.1) 

Proof. Let us note first that the conjugate equation (2.11.1) for * ( s ) co
incides with the conjugate equation we established for the terminal control 
problem in § 2.8. Much of the reasoning used in that section will apply 
here. Suppose for simplicity of notation that Ay(t) for all t 6 [0, T] is of 
order e. The problem defining the increment Ay(t) is 

Ay'(t) = f ( y ( t ) + A y ( t ) , v ( t ) ) - f (y ( t ) ,u ( t ) ) , (2.11.2) 

Ay(0) = 0. 

We need to find the main part of Ay(£) at t = T. Let us transform the 
right-hand side of (2.11.2): 

f (y + Ay, v) - f (y, u) = f (y + Ay, v) - f (y, v) + [f (y, v) - f (y, u)] 

= Vyf (y, v) • Ay + [f(y, v) - f(y,u)] + o(||Ay||) 

= Vyf (y, u) • Ay + [f (y, v) - f (y, u)] + o(|| Ay||). 

Thus (2.11.2) becomes 

(Ay(t))' = V y f (y( t ) ,u(0) • Ay(t) + [f(y(t), v(t)) - f(y(*),u(t))] 

+ o(||Ay(i)||). 

The main linear part of Ay(i) is described by the following problem: 

(6y(t)Y = Vyf(y(t),u(t)) - 6y(t) + [f(y(t),v(t)) - f(y(t),u(t))], 

<Jy(o) = o. 
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Now we can use Property 2.7.4 and write out the form of the solution: 

Sy(t)= f # ( t , s ) - [ f (y ( s ) ,v ( B ) ) - f (y ( a ) ,u ( S ) ) ]ds . 
Jo 

So the main linear part of Ay(T) is 

Sy(T) = [ $ (T , 8) • [f (y(S), v(s)) - f (y(s), u(s))] ds. 
Jo 

Now we can find the main linear part of the increment of the objective 
functional J (u) : 

AJ(u) = VyG(y(T)) • Ay(T) + o(||Ay(T)||) 

= / V y G(y(T) ) . * (T , S ) . [ f (y ( S ) , v ( S ) ) - f (y ( S ) , u ( S ) ) ]d S + o(£). 
Jo 

Denote * ( s ) = -V y G(y(T) ) • &(T,s). Then the last relation takes the 
form 

A J ( u ) = / * ( S ) . [ f ( y ( s ) , u ( 5 ) ) - f ( y ( S ) , v W ) ] d S + 0( e) 
Jo 

as stated by the theorem. Since vE'(s) is defined exactly as in § 2.8, we have 
completed the proof. • 

2.12 A Discrete Version of Small Variations of Control 
Function for Generalized Terminal Control Problem 

The formulas presented above for finding the change of the goal functional of 
a problem are used in practical calculations, but the problem itself should 
be discretized for this. Following the lecture of Dr. K.V. Isaev (Rostov 
State University) but in vector notation, let us consider one of the versions 
of possible discretization of the generalized terminal control problem. Let 
us recall the original problem. Given the governing equation 

y'(t)=f(y(*),u(*)) (2.12.1) 

for y = y(t) with the initial value y(0) = yo, find an admissible control 
function u = u(i) such that 

I (u ) —> min 
ueu 



148 Calculus of Variations and Functional Analysis 

where 

I ( u ) = G(y(*i), y ( s 2 ) , . . . , y(sN)). (2.12.2) 

We suppose that u(i) changes by a small variation 5u(t) and would like to 
find the main part of the increment AJ(u) = l(u+Su) — X(u) that is linear 
in 6u. We will not find the solution for this problem but will discretize the 
problem in whole and formulate the result for the latter. 

Let us partition the interval [0,s;v] by points to = 0 < t\ < ... < tR, 
tR = SJV, in such a way that the distance between two nearby points is small 
and the set {ti} contains all the points Sj from (2.12.2). On the segment 
(U-i,U] we will approximate the control function u(i) by a constant value 
denoted u[i\. Similarly, let us denote y[i] = y{U). Considering y[i — 1] as 
the initial value for equation (2.12.1) on [£j_i,£;] with u(t) = u[i], we can 
find the value y[i] that can be considered as a functional relation 

y[i} = Vi(y[i-l},u\i}). (2.12.3) 

If all the u[i] are given, then starting with y[0] = yo we get, by (2.12.3), all 
the uniquely defined values y[i}. In this way a discrete dynamical system is 
introduced. Note that it is not necessary to obtain (2.12.3) from (2.12.1); 
it can be formulated independently, and so the reasoning below is valid in 
a more general case that is not a consequence of the continuous dynamical 
system (2.12.1). The restriction for control function u G U for discrete 
control functions is rewritten as u S U*. Correspondingly the discrete 
generalized control problem can be reformulated as: 

Problem. Given 

y[i]=<Pi(y[i-l],n[i]), y[0] = y0, 

I ( u ) = G(y[ii], y[i2], ••-, y[iN}), (2.12.4) 

find u 6 U* such that 

I(u) —> min . 

The main part of the increment of X(u) that is linear in <5u is given by 
the following 
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Theorem 2.12.1 The main part of the increment o / I (u ) that is linear 
in 5u = 5u[i] is 

R 

Sl(u) = J2 V„[i]I(u) • 6u\i] (2.12.5) 
i = l 

where 

V u [ i ] I (u) = (V u [ i ]^(y[i - 1], u[t])) • 1>\i] (2-12.6) 

and ip[i] satisfy the equations 

# ] = (V y W^+i(y[ i ] ,u[ t + l])) -ip[i + l} 

+ Vy[i]Q(y[ii], y[i2], • • •, y H ) , i = R-l,R-2,... ,1, 

1>[R] = Vy[f l ]Q(y[H], y[i2], • • •, y M ) . (2-12.7) 

Proof. Before giving the proof we would like to point out the similar
ity between this and the result for the corresponding continuous control 
problem; in particular, there arises a system of equations for the comple
mentary function ip of the parameter i, whose solutions should be found 
in the reverse order, from i^[R] to i/>[l]. It is clear that it does not mat
ter on which step and how we discretize the problem, the main features 
of solution should be the same. First let us mention that now 2(u) is an 
ordinary function in many variables u[i] so all we need to find is the first 
differential of J (u ) under constraints from (2.12.4). Thus the formula for 
the first differential gives us 

R 

< J I ( u ) = £ V u [ i ] I ( u ) •*![*] 
i = l 

which is (2.12.5). Next 

Vu[i]2:(u) = Vu [ i ]Q(y[ii],y[i2], . . • ,y[ijv]) 
R 

= Y, V"[i]yb'] • Vyb-]Q(y[ii],y[i2], • • • J M ) . (2.12.8) 
3 = 1 

Here we used the chain rule for differentiation, formulated for the gradient. 
Let us find Vu[j]y[j]. For this we introduce a new vector function Fji 
induced by (2.12.3) that is defined for j > i: 

ybl = FMil). 
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Let us formulate the properties of Fji. It is obvious that 

F«(y[*]) = y[*]. 

Fi+i i(y[i]) = y[t + 1] = Vi+i(y[*W* + !])• 

Finally, it follows by the definition that 

Fji(y[i]) = Fj i+1(y[i + 1]) = F,- i+1 (^+ 1(y[i] ,u[i + 1])). (2.12.9) 

It is evident that the components of Fji depend only on the components 
u[i + 1], \x[i + 2 ] , . . . , u[j] and do not depend on the rest of the components 
of u. Let us return to finding Vu[jjy[j] using the chain rule again: 

Vu[i]yb'] = V„wF,-i(y[i]) = Vu[i]y[t] • Vy[ i ]F i i(y[i]) 

= V u [ i ] ^ (y[i - l],u[i]) • Vy[i]Fji(y{i\). 

Returning to (2.12.8) we get 

R 

VuWI(u) = Y, Vu[i]^ (y[i - l],u[i]) • V ^ F ^ ] ) 
j=i 

• Vy[j]Q(y[ii],y[i2], • • •, y[ijv])-

Denoting 

R 

[̂*] = ZJvywF i ' (y[ i])-vyy]^yN'y[ i2] '--"yM) (2.12.10) 

we get 

V u [ i ] I (u) = (yu[i[V>i(y[i - l],u[t])) • V[i] 

which is (2.12.6). 

It remains to derive equations for ip[i]. We begin with formula (2.12.9): 

Fji(y[i\)=Fji+1(y[i + l]). 

Applying the gradient by y[i] to both sides we get 
vy[i]Ftf(y[*]) = Vy [ i j^+ 1(y[i] ,u[i + 1]) • Vy [ i + i ]Fj i+1 (y[t + 1]). 
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Substituting this into (2.12.10) we get 

R 

# ] = J2 VyflFjifyfl) • Vy[i]Q(y[ii], y[ i 2 ] , . . . ,y[ijv]) 

= 5 Z V y[ i ]^+ i (yW' u [ i + 1 ] ) ' v y[ i+i ]Fj i+ i (y[ i + l]) 

• V y [ i ] Q ( y [ i i ] , y [ i 2 ] v , y H ) 

+ Vy[i]Fii(y[t]) • VyWQ(y[ii], y[i3] , . . • ,y[iN]) 

= Vy[i]<Pi+i(y[i],u[i + 1]) • # + 1] + Vy[ i ]Q(y[ii],y[i2], • • • , y M ) 

where we have used the fact that Vy[*]Fji(y[i]) = E. So we have obtained 
the first of (2.12.7). From the intermediate result of this equality chain the 
second of (2.12.7) follows. • 

We now turn to another class of problems. 

2.13 Optimal Time Control Problems 

We recall that the problems of this type are as follows. The object is 
described by a dynamical system 

y'(t)=f(y(t),u(t)) (2.13.1) 

for which we must find an admissible control function u(t) in such a way 
that the parameters of the system must be changed from the initial state 

y ( 0 ) = y o (2.13.2) 

to the final state 

y(T) = yi (2.13.3) 

in minimal time T. Unlike the terminal control problem, here the final 
state of the system is fixed but not the time interval. 

Let us note that in this problem the set U of admissible control functions 
is limited not only by the external inequality restrictions, but also by the 
boundary conditions (2.13.2)-(2.13.3) because it may happen so that there 
are no admissible control vectors such that the system, starting with the 
initial state yo, can reach the final state yi in finite time T. 



152 Calculus of Variations and Functional Analysis 

Next we recall that for the terminal control problem we obtained a 
conjugate problem with an initial (i.e., "final") condition at T which was 
called the condition of transversality. The optimal time problem has both 
the boundary conditions for y of the same form as the condition at t = 0 of 
the terminal control problem. Thus we should expect that if Pontryagin's 
principle of maximum is valid in this or that form for the optimal control 
problem then any boundary conditions for \&(s) are absent. This means 
that the uniqueness for finding *(s ) needed for this problem is not pro
vided by some explicit equations. The explicit formula for the increment 
of the objective functional for the optimal control problem is not obtained. 
So we formulate without proof the statement of Pontryagin's principle of 
maximum for the optimal control problem. 

Theorem 2.13.1 Let u(t) be a control function at which T, the length of 
the time interval, attains its minimal value among all the admissible control 
functions, for which (2.13.1)-(2.13.3) has a solution y(t). There is a non-
trivial vector function *&(s) that is a solution of the conjugate equation 

^ * ( S ) = - # ( * ) • Vyf(y(S),u(s)) 

such that the Pontryagin function H(y, * , u) = f (y, u) • \I>, with respect to 
the third argument, takes its maximal value for all points of continuity of 
u(t): 

i J (y( t ) ,*( t ) ,u( i ) ) > ff(y(t),¥(t),v). 

Let us note that in simple cases when u(t) comes into the equations 
linearly this theorem reduces the set of possible control functions to those 
which take values at boundaries of U at each time t. Indeed, then u(i) 
comes linearly into the presentation of H(y, \l/,u) = * • f(y,u) and thus 
its maximal value can be taken only at some extreme points of u(t). 

Example 2.13.1 Consider the simplest optimal time problem. Let a 
material point of unit mass move along a straight line under the action of 
a force whose magnitude F cannot exceed unity. How should we vary F so 
that the point moves from one position to another in the shortest time? 

Solution If the velocity of the point at its initial and final states is zero 
then the solution is clear mechanically: first we need to accelerate the point 
with maximal force until it comes to the middle point between the initial 
and final state, and then to switch the force to the opposite direction leav
ing the maximal magnitude so the point is maximally decelerated. When 
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the appointed initial and final velocities are not zero one must have good 
mechanical intuition to tell what the law for the force should be. Let us 
solve this problem using Theorem 2.12.1. The governing equation is 

x"(t) = F(t), x(0) = ao, x'{0)=ai, x{T)=b0, x'(T) = bu 

(2.13.4) 

and the restriction for F(t) is 

\F(t)\ < 1. (2.13.5) 

Let us rewrite this using the notation we used above: 

yi(t)=x(t), y2{t) = x'1(t), u{t) = F(t). 

Thus we introduce the phase coordinates of the point. Then equations 
(2.13.4)-(2.13.5) take the form 

y[(t) = y2{t), 

1/2 ( * ) = « ( * ) . 

the boundary conditions 

j/i(0) = o0) a n d yi(T)=b0, 
2/2(0) = a i , V2(T) = bi, 

and the restriction that defines the set U of piecewise continuous functions 

- 1 < u(t) < 1. 

Let us first introduce the Pontryagin function H = y2'>Pi + w4>2- Let y(t) 
and \l>(t) be the needed solutions of the main and conjugate systems of 
equations. The conjugate equations are 

V4 = -dH/dyi = 0, 

V>2 = -dH/dy2 = - V L 

The solution of this system results in ^2 = d\t + d2 and thus may have no 
more than one point to G [0, T] at which it changes sign. By Pontryagin's 
principle, it is the only point at which the control function u must switch 
sign as H can take its maximum when tp2(t)u(t) takes its maximum. Thus £0 
splits [0, T] into two parts having u = ±1 . Thus the solution to our simplest 
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optimal time control problem should be synthesized from trajectories of the 
two systems 

y'x(t)=y2{t), y'i(t)=y2(t), 
j£(t) = i, a a y'2(t) = -i. 

The particle trajectories on the phase plane (y 1,1/2) are parabolas. For the 
first system y\ = t2/2 + c\t + c2 and for the second y\ = —t2/2 + c^t + C4. 
Geometrically it is evident that there are no more than two parabolas, 
one from each family, through the end points which intersect. That is 
the solution trajectory of the problem. Analytically we must compose five 
equations for unknown Cj and to- The first is that at to the curves intersect, 
that is 

4/2 + ciio + c2 = -tl/2 + c3t0 + c4. 

The other four equations (boundary conditions) depend on which of 
switched values of u goes first. If u = 1 on [0,to] and thus u = —1 on 
the rest, 

c2=a0, c i = a i , -T2/2 + c3T + c4 = b0, -T + c3 = bx. 

If u = — 1 on [0, to] then 

c4 = a0, c3 = ai , T2/2 + dT + c2 = bo, T + c1=b1. 

Only one of these systems has a solution where real £0 lies in [0,T] and it 
is what we have sought. 

We would like to note that when the controlled object's equations are 
simple, the maximum principle of Pontryagin gives a good tool to find 
an optimal solution. For many industrial problems it is necessary to use 
other methods. In the same manner as Example 2.13.1, any optimal time 
problem for a system described by the equation x" + ax' + bx = u can be 
solved analytically. Textbooks are full of such problems from various areas 
of science, their analytical solutions as well as geometrical interpretation of 
some of their solutions. 

Our next remark is the following. The terminal control problems and 
the optimal time problems are in a certain sense, the extremes of all con
trol problems with respect to boundary conditions. For "intermediate" 
problems, with other types of boundary conditions at starting and ending 
moments, the conjugate system is supplemented with some conditions of 
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transversality. The situation is similar to that for natural conditions in the 
calculus of variations. 

2.14 Final Remarks on Control Problems 

In this chapter we considered in large part the methods for finding opti
mal solutions. Of course it was an introductory chapter, and we limited 
ourselves to a small portion of the theory — that portion which is used 
in many industrial control processes and other applications. We did not 
touch on the problem of existence of solutions of control problems, which 
is extremely important since there are many practical problems that are 
formulated quite nicely from a common sense standpoint but that lack so
lutions. 

We mention only another important part of control theory that is called 
dynamical programming. It was developed by R. Bellman and used quite 
successfully in many problems of optimal control. To give the reader some 
idea of what this theory is about and to lend vividness to the presentation 
we consider a very simple problem (in a form that might hold the attention 
of many undergraduate students): 

Example 2.14.1 A racketeer has been drunk for three weeks and has 
failed to perform his job properly. One morning he receives a phone call 
from his boss, reminding him of a $32,000 debt he owes the boss in one hour. 
Along with this reminder comes a suitable threat about one lost tooth for 
each $1000 he fails to bring in. The racketeer lives quite far from his boss, 
and wishes to collect as much additional money as possible on the way. He 
has a street map showing how much money he can collect on each possible 
route. He is constrained to move ahead only, and cannot turn back. 

Solution We draw the map as a graph (Fig. 2.4) that should begin at 
point O and end at B. To get a more convenient presentation at the final 
point B we split all routes to B and draw them along the final line BQ-BI 

as shown on the picture. On the lines connecting the nodes we put the 
amounts of money that the racketeer expects to be able to collect from the 
peaceful citizenry. 

Let us discuss this problem. Of course, for this small map the racketeer 
could test all the possibilities and find the optimal way quite quickly. There 
are six levels at each of the way can branch so there are few possibilities. 
Let us imagine that this map has 1000 such levels; then the number of 
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#997 #998 #999 #1000 

Fig. 2.4 A racketeer's possible routes; optimal trajectory shown as the thick line. 

possible ways grows to 21000 and simple experimentation would not bring 
a quick result. So it becomes necessary to propose a procedure for which 
the number of operations could be sufficiently small, say several million. 
Any cross-section of the map would not bring the needed optimal result 
since the optimal trajectory can be quite strange. The crucial step to the 
solution is to choose the first step as follows. Suppose that we are at the 
999th level of nodes. Prom each node of this level we exactly know where to 
move since it is a choice between two possibilities. Near each node of this 
level we write down where we should move (Down or Up) and the amount. 
On the 998th level we again should fulfill few operations at each node: 
moving along the upper street we then add the figure of this street with the 
price of corresponding 999th node after which we should decide between the 
two possibilities and to write near the node Up or Down (showing where 
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to go next) and the optimal cost. On the 997th level everything will be 
repeated: the finding of two sums of two numbers, the choosing of the 
bigger one, and the placement of the necessary information near the node. 
This is must be done at each level. In this way we come to the initial point, 
getting the optimal sum of money as the resulting figure at it, and the 
optimal trajectory moving along signs Up and Down. 

At first glance this seems to be a nice problem for a high school math 
competition, since it is solved using only "common sense". However, its 
solution is based on a hard mathematical idea: when we come to some 
point of the optimal trajectory, the remainder of the optimal trajectory is 
optimal for the "reduced" problem whose initial point is this one at which 
we just stopped. 

We shall not discuss the many fruitful applications of this principle of 
Bellman. As the central principle of dynamical programming it has brought 
many results, both theoretical and practical, in discrete and continuous 
problems. 

We leave it to the reader to explore other books, and thereby to discover 
other ways to view problems in optimal control and the calculus of varia
tions. These are indeed part of the more general branch of mathematics 
known as Mathematical Programming. 

2.15 Exercises 

2.1 Show that the coefficients of the squared gradient 

vy = vy (vy) 

applied to a scalar valued function f(y(t)) constitute the Hessian matrix of / . 

2.2 Establish the formula (2.7.21). 

2.3 Formulate the form of the main linear paxt of the increment of J (u) under 
the sum of the increments of the control function by the needle-shaped vector 
function and a small increment as discussed in the current section. 

2.4 (A harder problem.) Let the objective functional for the terminal control 
problem be changed to 

J*(u)= [TG{y{t))dt. 
Jo 

What is the form of the main part of its increment in this case? 

2.5 A mechanical oscillator (a mass on a spring) oscillates under force |F( t ) | 
such that \F(t)\ < 1. The governing equation is mx" + kx = F, m = 1, k = 1. 



158 Calculus of Variations and Functional Analysis 

Find the law of the change of the force when the mass goes from state a:(0) = a, 
x'(0) = b to the state of equilibrium, x(T) = 0, x'(T) = 0 in the shortest time T. 



Chapter 3 

Functional Analysis 

A principal tool in the modern analysis of partial differential equations, 
functional analysis allows us to shift our perspective on functions from 
the viewpoint of ordinary calculus to a viewpoint in which we deal with a 
function (such as a differential or integral operator) as a whole entity. We 
accomplish this conceptual shift by extending the notion of an ordinary 3-D 
vector so that a function can be viewed as an element of a linear vector 
space. Because this extension involves some subtle points regarding the 
dimension of a vector space, we devote the present chapter to a suitable 
introduction for the reader. 

As a branch of mathematics, functional analysis is in large part de
lineated by the tools it offers to the practitioner. Important applications 
arise in a variety of areas: differential and integral equations, the theory 
of integration, probability theory, etc. It has been said that functional 
analysis is not a special branch of mathematics at all, but rather a united 
point of view on mathematical objects of differing natures. A full presen
tation of functional analysis would require many volumes. The goal of the 
present chapter is to offer the reader a relatively brief but still self-contained 
treatment, and therefore to provide all the tools necessary for the study of 
boundary value problems. 

Before we begin it will be useful to recall two standard theorems from 
ordinary calculus: 

Theorem 3.0.1 Suppose a sequence {/n(x)} of functions continuous on 
a compact set fl C Rfc converges uniformly; that is, for any e > 0 there is 
an integer N = N(e) such that | / n(x) — / m ( x ) | < e whenever n,m > N 
and x € S l . Then the limit function 

/ (x ) = lim / n (x ) 

159 
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is continuous on f2. 

This is called Weierstrass' theorem. The next one shows the properties 
of a continuous function on a compact set. 

Theorem 3.0.2 Suppose / (x) is continuous on a compact set tt C Efc. 
Then / (x ) is uniformly continuous on Q; that is, for any e > 0 there is a 
S > 0 (independent of e) such that | /(x) - / (y ) | < e whenever ||x — y|| < 5 
and x, y 6 fi. 

3.1 A Normed Space as a Metric Space 

Regarding a function as a single object (a viewpoint which functional anal
ysis inherited from the calculus of variations), we must provide a way to 
quantify the difference between two functions. The simplest and most con
venient way to do this is to use the tools of normed spaces. First of all a 
normed space, consisting of elements of any nature (of functions in partic
ular), must be a linear space. This means that we can add or subtract any 
two elements of the space, or multiply an element of the space by a num
ber, and the result will always be an element of the same space. If complex 
numbers are used as multipliers then the linear space is called a complex 
linear space; if purely real numbers are used then the space is a real linear 
space. The definition of a linear space can be stated rigorously in terms 
of axioms and the reader has undoubtedly seen these in a linear algebra 
course. The main distinction between a general linear space and a normed 
space is the existence of a norm on the latter. A norm is a real-valued 
functional ||x|| that is determined (which means it takes a unit and a finite 
value) at each element x of the space and satisfies the following axioms: 

(1) ||x|| > 0 for all x; \\x\\ = 0 if and only if x = 0; 
(2) ||Ax|| = |A| ||x|| for any x and any real number A; 
(3) \\x + y\\ < ||a;|| + ||y|| for all a:, y. 

The first of these is called the axiom of positiveness, while the second is the 
axiom of homogeneity and the third is the triangle inequality. 

Definition 3.1.1 A normed linear space is a linear space X on which a 
norm ||-|| is defined. 

More specifically, ||-|| is "defined" on X if the number ||x|| exists and is 
finite for every element x £ X. 
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In classical functional analysis one deals with dimensionless quantities. 
In applications this restriction is not necessary: one can use numbers with 
dimensional units and get norms having dimensional units. Although this 
introduces no theoretical complications and is sometimes quite useful, we 
shall follow the classical procedure and consider all elements to be dimen
sionless. 

Example 3.1.1 Show that if ||a;|| is any norm on X and x,y e X, then 

INI-IMII<l|z-2/ll-
We shall find this inequality useful later. For example, in accordance with 
the definition of continuity it means that the norm is continuous with re
spect to the norm itself. 

Solution Let us begin by replacing x with x — y in norm axiom 3: we 
get 

\\x\\ - h\\ < \\x-y\\-

Interchanging the roles of x and y in this inequality, we get 

IMI-H<lto-*I|. 
But the right-hand sides of these two inequalities are the same; indeed, .we 
have \\y — x|| = ||(—l)(ar — y)\\ — \\x — y\\ by norm axiom 2. So the quantity 
||a; — y\\ is greater than or equal to both ||x|| — ||?/|| and ||2/|| — ||x||. This 
means it is greater than or equal to | ||a;|| — ||y|| |. 

We have introduced the normed space C{k\n) of functions that are k 
times continuously differentiable on a compact set £1 with the norm 

H/llc(*)(n) = max | / (x) | + £ max|D«/(x) | . (3.1.1) 
H<fc 

where 

As with any other proposed norm, the reader should verify satisfaction of 
the axioms.1 A particular case is the space of all functions continuous on 

1For example one could take the set of functions continuous on [0,1] and try to 
introduce a "norm" using the formula | | / (x) | | = | /(0.5) | . Which norm axiom would fail? 
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D, with the norm 

| | / | | c ( n ) = m a x | / ( x ) | . (3.1.2) 

In the space of functions continuous on a compact Q. we can introduce 
another norm: 

l l / ( X ) " = ( l l / ( x ) | P d 0 ) " (P-1}' 
The norm axioms can be verified here also (the triangle inequality being 
known as Minkowski's inequality.).2 Thus we see that on the same set 
(linear space) of elements we can introduce one of several norms. On the 
same compact fi we can consider the set of all bounded functions and 
introduce the norm 

| | / ( x ) | | = s u p | / ( x ) | . (3.1.3) 
xefi 

The resulting space will be called M(Q). The space C(fi) is a subspace 
of M(fl) (note that for a continuous function the norm (3.1.3) reduces to 
(3.1.2)). The reader sees that a normed space is denned by the set of 
elements and the form of the norm imposed on it. So to refer properly a 
space, we must display a pair consisting of the set of elements X and the 
form of the norm, something like (X, ||-||). For the most frequently used 
spaces it is common to use shorthand notation such as C(f2) where the norm 
is understood. This is especially appropriate when there is a unique norm 
imposed on a set, and we shall adopt the practice. When it is necessary 
to distinguish different norms, we shall indicate the space as a subscript on 
the norm symbol as we have done in (3.1.1) and (3.1.2). 

If we define for each pair of elements of a normed space another func
tional 

d(x,y) = \\x-y\\, (3.1.4) 

we see that it satisfies the axioms of a metric: 

(1) d(x, y) > 0 for all x, y, and d(x, y) = 0 if and only if x = y; 
(2) d(x,y) = d{y,x) for all x,y; 
(3) d(x, y) < d(x, z) + d(z, y) for all x, y, z. 

We assume fi is Jordan measurable. This is a safe assumption for our purposes, 
because we consider only domains occupied by physical bodies having comparatively 
simple shape. 
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If such a functional (metric) is denned for any pair of elements of a set X, 
then we have a metric space. 

Definition 3.1.2 A metric space is a set X on which a metric d(x,y) is 
denned. 

Hence we see that every normed space is a metric space (the metric 
(3.1.4) is called the natural metric and is said to be induced by the norm). 
The notion of metric space is more general than that of normed space. Not 
all metric spaces can be normed: first of all a metric space need not be 
a linear space (a fact which is sometimes important, as in applications of 
the contraction mapping principle). Note that the use of elements with 
dimensional units would give a metric having dimensions as well; although 
the metric is a generalization of the notion of distance, this distance can be 
expressed in units of force, power, etc. 

The axioms of a metric replicate the essential properties of distance 
from ordinary geometry: (1) distance is nonnegative, the distance from 
a point to itself is zero, and the distance between two distinct points is 
nonzero; (2) the distance between two points does not depend on the order 
in which the points are considered; and (3) the triangle inequality holds, 
meaning that for a triangle the length of any side does not exceed the sum 
of the lengths of the other two sides. In this way the more general notion 
of metric preserves many of the terms and concepts of ordinary geometry. 
For example, we have 

Definition 3.1.3 An open ball with center XQ and radius R is the set of 
points x £ X such that d(xo,x) < R. The corresponding closed ball is the 
set of all x £ X such that d(xo, x) < R, and the corresponding sphere of 
radius R is the set of all x G X such that d(xo, x) = R. 

Note that the term "ball" can denote various objects depending on the 
metric chosen: if we introduce the metric 

d(x,y) = max \xi — yi\ 
l < i < 3 

in ordinary 3-D space where x — {x\,X2,xz) and y = (yi,y2,V3), then a 
ball is really shaped like a cube. The other abstract space structures also 
provide notions that correspond to those of ordinary geometry. In a linear 
space of vectors we can determine a straight line through the points x\ and 
X2 by the equation 

txi + {1 - t)x2, t£ (-00,00), 
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and can obtain the segment having x\ and x2 as endpoints by restricting t 
to the interval [0,1]. It is especially important that we can use the notion 
of metric to introduce the tools of calculus in such a way that functions can 
be dealt with as whole objects. (We should note that metric spaces are not 
linear in general, so they include spaces that cannot be normed. However, 
even some linear metric spaces cannot be normed.) 

Armed with a notion of distance in a normed space, we can introduce 
any of the notions from calculus that are connected with the notion of 
distance. First is the notion of convergence. 

Definition 3.1.4 We say that a sequence {xn} is convergent to an ele
ment x if to each positive number e there corresponds a number N = N(e) 
such that d(xk,x) < e whenever k > N. 

The reader can easily reformulate this definition in terms of the norm. 
Just as in calculus we call x the limit of {£&} and write linifc—Kx, x^ — x 

or Xk —> x as k —> oo. 

Example 3.1.2 (a) Show that every convergent sequence in a metric 
space has a unique limit, (b) Show that if xn —> x and yn —• y, then 
d(xn,yn) —» d(x,y) as n —> oo. 

Solution (a) Our approach will be to suppose that xn —+ x and xn —> x', 
and then to show that x' = x follows. Let e be an arbitrarily small positive 
number. By assumption we can choose N so large that the inequalities 
d{xr-i,x) < e/2 and d(xN,x') < e/2 both hold. By the triangle inequality 
then, we have 

d(x, x') < d(x,XN) + d(xjv, x') < e. 

Since the distance d(x, x') is both nonnegative and smaller than any preas-
signed positive number, it must equal zero. According to metric axiom 1, 
we conclude that x = x'. (b) The generalized triangle inequality 

d(xi,xn) < d(xi,x2) + d(x2,x3) H \-d(xn-1,xn) 

is easily established through the use of mathematical induction. We can 
use this fact as follows. We write 

d(x,y) < d(xn,x) +d(xn,yn) + d(yn,y) 

and 

d(xn,yn) < d(xn,x) + d(x,y) +d(y„,y), 
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and then combine these two inequalities into the form 

\d(xn,yn) - d(x, y)\ < d(xn, x) + d(yn, y). 

Now given any e > 0 we can choose N so large that n > N implies both 
d(xn, x) < e/2 and d(yn, y) < e/2. This means that \d(xn, yn)—d{x, y)\ < e, 
as desired. 

It is clear that a sequence of functions continuous on [0,1] that converges 
in the norm (3.1.2) also converges in the norm 

||/(a:)|| = 2 max |/(a:)| . 
x€[0,l] 

However there are other norms, of Lp(0,1) say, under which the meaning of 
convergence is different. It is clear that if two norms H-^ and ||-||2 satisfy 
the inequalities 

m INI! <||a:||2< M M ! (3.1.5) 

for some positive constants m and M that do not depend on x, then the 
two resulting notions of convergence on the set of elements are the same. 

Definition 3.1.5 Two norms | | - | j x and ||-||2 that satisfy (3.1.5) for all 
x £ X are said to be equivalent on X. 

We shall not distinguish between normed spaces consisting of the same 
elements and having equivalent norms. 

3.2 Dimension of a Linear Space and Separability 

The reader is aware that the dimension of a linear space is the maximal 
number of linearly independent elements of the space. We recall that the 
elements Xk, k = 1,2,. . . , n, are linearly independent if the equation 

CiXi + C2X2 H 1" CnXn = 0 

with respect to the unknowns Cfc implies that c^ = 0 for all k = 1,2,. . . , n. 
We shall deal for the most part with infinite dimensional spaces. An im
portant example is the space C(0,1) of functions f(x) continuous on [0,1]. 
Indeed, any set of monomials fk{x) = xk is linearly independent in this 
space, since for any integer n the equation 

C\X + C2X
2 + • • • + CnX

n = 0 



166 Calculus of Variations and Functional Analysis 

cannot hold for any x unless c^ = 0 for all k = 1,2,. . . , n. Therefore the 
dimension of C(0,1) cannot be finite. 

Let us discuss the problem of the number of elements in an abstract set. 
We shall say that two sets have equal power if we can place their elements 
in one-to-one correspondence. The simplest known infinite sets are those 
whose elements can be placed in one-to-one correspondence with the set 
of natural numbers. Such sets are said to be countable. An example is 
the set of al integers. It is clear that a finite union of countable sets is 
countable, since we can successively count first the elements standing at 
the first position of each of the sets, then the elements at standing at the 
second position, etc. There is a sharper result: 

Theorem 3.2.1 A countable union of countable sets is countable. 

Proof. Let Xn be the nth countable set and denote its fcth element by 
%nk, k = 1,2, The union of the Xn is the set of all elements xnk- We 
need only to show how to recount them; this can be done as follows. The 
first element is xn. The second and third elements are £12 and £21, i.e., the 
elements whose indices sum to 3. The next three elements are the elements 
whose indices sum to 4: £13, £22 £31- We then enumerate the elements 
whose indices sum to 5, 6, etc. In this way we can associate any element of 
the union with an integer. • 

A consequence of this is that the set Q of all rational numbers is count
able. Recall that a rational number can be represented as i/j where i and 
j are integers; denoting Xij — i/j, we obtain the proof. Thus a countable 
set can have extremely many elements. However it can be shown that 

Theorem 3.2.2 The points of the interval [0,1] are not countable. 

We shall not prove this result here, but instead refer the interested 
reader to any book on real analysis. We say that the points of [0,1] form a 
continuum. It is a valid question whether there exist any sets intermediate 
in power between the countable sets and continuum sets. It turns out that 
the existence or non-existence of such a set is an independent axiom of 
arithmetic, a fact which points to the interesting (and sometimes rather 
mysterious) nature of the real numbers. 

Example 3.2.1 Show that the set P r of all polynomials with rational 
coefficients is countable. 

Solution For each fixed nonnegative integer n, denote by P™ the set of 
all polynomials of degree n having rational coefficients. The set P™ can be 



Functional Analysis 167 

put into one-to-one correspondence with the countable set 

Q x Q x • • •Q. 

n+1 times 

Finally, the set Pr is given by 

oo 

Pr = U Pr, 
n=0 

and this is a countable union of countable sets. 

Another example of a countable set is the collection of all finite trigono
metric polynomials of the form 

n 

ao + /_XflA; cos kx + bk sin kx) 
fe=i 

with rational coefficients ao, a^, b^. 

Let us discuss the real numbers further, keeping in mind that many of 
our remarks apply to the complex numbers as well. Any real number can 
be obtained as a limit point of some sequence of rational numbers. This 
fundamental fact is, of course, the reason why a computer can approximate 
a real number by a rational number. The ability to approximate the el
ements of a given set by elements from a certain subset is important in 
general. 

Definition 3.2.1 Let S be a set in a metric space X. We say that a set 
Y C S is dense in S if to each point s € S and e > 0, there corresponds a 
point y £ Y such that d(s, y) < e. 

As an example let us note that the set of rational numbers is dense in 
the set of real numbers. Next, it is clear that we can express the definition 
in other terms: Y is dense in S if for any s £ S there is a sequence {yn} C Y 
that converges to s. 

Example 3.2.2 Let A, B, C be sets in a metric space. Show that if A is 
dense in B, and B is dense in C, then A is dense in C. 

Solution Let us assume that A is dense in B and B is dense in C. Let c 
be a given point of the set C, and let e > 0 be given. We can find a point 
b G B such that d(c, b) < e/2. Similarly, we can find a point a € A such 
that d(b, a) < e/2. Since 

d(c, a) < d(c, b) + d(b, a) < e/2 + e/2 = e, 
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we have found a point a G A that lies within distance e of our given point 
ceC. 

Definition 3.2.2 If a metric space X contains a countable subset that 
is dense in X, then we say that X is separable. 

Example 3.2.3 Demonstrate that the set of all complex numbers with 
the natural metric (induced by the absolute value of a number) is a sepa
rable metric space. 

Solution Consider the subset of complex numbers having rational real 
and imaginary parts. This set is clearly countable (it can be placed into 
one-to-one correspondence with the countable set Q x Q ) . We must still 
show that it is dense in C. Let z = u + iv be a given point of C, i — y/—l, 
and let e > 0 be given. Since u and v are real numbers, and the rationals 
are dense in the reals, we can find rational numbers u and v such that 

\u-u\ < e/V2, \v -v\ <e/V2. 

The number z = u + iv is a complex number with rational real and imagi
nary parts. Noting that 

d{z, z) = y/{u - u)2 + (v- v)2 < \J(e/V2)2 + (e/V2)2 = e, 

we are finished. 

Theorem 3.2.3 Every finite dimensional normed space is separable. 

We leave the simple proof as an exercise and proceed to 

Theorem 3.2.4 Every subspace of a separable space is separable. 

Proof. Let E be a subspace of a separable space X. Consider a countable 
set consisting of {x\, X2, • • •) which is dense in X. Let B^ be a ball of radius 
1/fc about Xi. By Theorem 3.2.1, the set of all Bki is countable. 

For any fixed k the union UjBfci covers X and thus E. For every Bki, 
take an element of E which lies in Bki (if it exists). Denote this element by 
eki- For any e G Bki H E, the distance d(e,eki) is less than 2/k. It follows 
that the set of all e ĵ is, on the one hand, countable, and, on the other 
hand; dense in E. • 

The reader will recall that a subspace of a linear space X is a subset 
of X whose elements satisfy the linear space axioms. This simple theorem 
is important in practice because sometimes it is easy to prove that a space 
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is separable, whereas a direct proof of separability for one of its subspaces 
can be difficult. 

An important theorem from analysis is the Weierstrass approximation 
theorem: if / is continuous on a compact domain in Rn , then there is 
a sequence of polynomials that can "uniformly approximate" / on that 
domain. Upon this result rests 

Theorem 3.2.5 If £1 is a compact domain in W1, then the space C(Q) 
is separable. 

Proof. The set of all polynomials with rational coefficients is dense in 
the set of all polynomials. We may then apply the Weierstrass theorem to 
see that the set Pr of all polynomials with rational coefficients is dense in 
C(Q). Since Pr is countable, C(fi) is separable. • 

The next result can also be established: 

Theorem 3.2.6 The space C^(fl) is separable for k = 1,2, 

3.3 Cauchy Sequences and Banach Spaces 

If xn —> x, then by the triangle inequality 

^Kp^n+mt^n) ^ ayXn^-rn^ X) -r dyX, Xn) 

we see that for any e > 0 there is a number N = N{e) such that for any 
n > N and any positive integer m, 

In calculus such a sequence is given a special name: 

Definition 3.3.1 A sequence {xn} is a Cauchy sequence if to each e > 0 
there corresponds N = N(e) such that for every pair of numbers m, n the 
inequalities m> N and n > N together imply that d(xm, xn) < e. 

It is easy to see that every convergent sequence is a Cauchy sequence. 
According to a famous theorem of calculus, any Cauchy sequence of real 
numbers is necessarily convergent to some real number, so in R the notions 
of Cauchy sequence and convergent sequence are equivalent. In a general 
metric space this is not so, as is demonstrated next. 
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Example 3.3.1 Show that the sequence of functions 

0<x< §, 

fn(x) = < 
o, 
nx 

1 
2 — x - 2 + n-

£ + £ < * < ! , 
(n = 2,3,4, . . . ) 

continuous on [0,1] is a Cauchy sequence in L(0,1) but has no continuous 
limit. Note: the norm in the space L(0,1) is given by ||/(a;)|| = J0 \f(x)\dx. 
Is this a Cauchy sequence in the norm of C[0,1]? 

Solution Each fn(x) is continuous on [0,1]. To see that {/„} is a Cauchy 
sequence, we assume m > n and calculate 

d(fn, fm) = I [rnx - y ) - [nx - - j dx 

+ lll\l-(nX-D dx 

1 
m 

However, we have /„ 

) —> 0 a s m , n - t oo. 

0 <x < \, 

5 < x < 1, 

because 
„I_I_J_ 

d(fnJ) = Ji
 l-[nx~2) dx = 

2n oo. 

The function f(x) is clearly not continuous. 

The property that any Cauchy sequence of a metric space has a limit 
element belonging to the space is so important that a metric space having 
this property is called complete. If a normed space is complete, it is called 
a Banach space in honor of the Polish mathematician Stefan Banach who 
discovered many important properties of normed spaces. 

Definition 3.3.2 A metric space X is complete if every Cauchy sequence 
in X converges to a point in X. A Banach space is a complete normed space. 

In applications we encounter solutions to many problems expressed in 
the form of functional series. To deal with them as with series of elements 
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in the usual calculus, let us introduce a series in a Banach space. We say 
that a series of the form 

Y]xk {xk 6 X) 
fc=i 

converges to an element s G X if the sequence {s„} of partial sums 

n 

Sn
 = / j Xk 

fc=l 

converges to s 6 X in the norm of X. The notion of absolute convergence 
may also be adapted to series in Banach spaces. 

Definition 3.3.3 We say that the series Ylk^Li xk converges absolutely if 
the numerical series X f̂tLi \\xk\\ converges. 

In a Banach space, as in ordinary calculus, absolute convergence implies 
convergence: 

Theorem 3.3.1 Let {xk} be a sequence of elements in a Banach space 
X. If the series JZ'kLi Xk converges absolutely, then it converges. 

Proof. By the triangle inequality we have, for any n and p > 1, 

n+p n 

^ X k - ^ X k 

k=l fc=l 
< 

n+p n 

fc=l fc=l 

By hypothesis the sequence Y^k-i \\xk\\ converges and is therefore a Cauchy 
sequence. By the inequality above, J3fe=i xk ls a Cauchy sequence and will 
converge to an element of X by completeness. • 

Example 3.3.2 Show that under the conditions of the previous theorem 
we have 

Solution We have 
n 

lim y^Xfc 
OO 

k=\ k=\ 

5>fc 
fc=l 

= lim 
n—+oo 

OO 

< y^llzfcl 
fc=l 

E^ 
fc=l 

< lim V||a;/c| | =y] | |a ; fc | 
n—>oo z — ' z — ' fc=l fc=l 

Here we used the continuity of the norm, and then the triangle inequality 
for finite sums. 
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Many of the other results from ordinary calculus also carry over to 
series in Banach spaces. For example, we can add two convergent series 
and perform the addition term-by-term: 

oo oo oo 

fe=i fc=i k=i 

We can also multiply a series by a scalar constant A in the usual way. 

oo oo 

A ^ Z f c = ^Axfc . 
fc=l fc=l 

Definition 3.3.4 An element x of a metric space X is called a limit point 
of a set S if any ball centered at x contains a point of S different from x. 
We say that S is closed in X if it contains all its limit points. 

A limit point is sometimes referred to as a point of accumulation. The 
following result provides a useful alternative characterization for a closed 
subset of a complete metric space. 

Theorem 3.3.2 A subset S of a complete metric space X supplied with 
the metric of X is a complete metric space if and only if S is closed in X. 

Proof. Assume 5 is complete. If a; is a limit point of S, then there is a 
sequence {xn} C S such that xn —> x. But every convergent sequence is a 
Cauchy sequence, hence by completeness {xn} converges to a point of 5. 
From this and uniqueness of the limit we conclude that x G S. Hence S 
contains all its limit points and is therefore a closed set by definition. 

Now assume S is closed. If {xn} is any Cauchy sequence in S, then {xn} 
is also a Cauchy sequence in X and converges to a point x € X. This point 
x is also a limit of S however, hence x 6 S. So every Cauchy sequence in 
S converges to a point of S, and S is complete by definition. D 

We now turn to some examples of Banach and normed spaces. The 
simplest kind of Banach space is formed by imposing a norm on the linear 
space Kn of n-dimensional vectors x = (x\,X2, • • •,xn)- A standard norm 
defined on this space is the Euclidean norm 

/ n \ 1/2 

The resulting Banach space (Rn, ||-||e) is finite dimensional. The following 
result allows us to ignore the distinction between different normed spaces 
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that are formed from the same underlying finite dimensional vector space 
by imposing different norms: 

Theorem 3.3.3 On a finite dimensional vector space all norms are equiv
alent. 

Proof. It is enough to prove that any norm is equivalent to the Euclidean 
norm ||-||e. Take any basis ik that is orthonormal in the Euclidean inner 
product. We can express any x as x = X f̂e=i cfc*fc- Then 

/ „ \ 1/2 

£4 
For an arbitrary norm 

x = y^cfcifc 
fc=i 

m x 

where m = Yjk=i ll^ll ^s finite. So one side is proved. For the other side, 
consider ||:r|| as a function of the n variables c^. Because of the above 
inequality it is a continuous function in the usual sense. Indeed 

I H^ill - lla^ll | < ||a:i - x2\\ < m \\xi - x2\\e . 

It is enough to show that on the sphere ||ar||e = 1 we have inf ||a:|| = a > 
0 (because of homogeneity of norms). Being a continuous function, ||a;|| 
achieves its minimum on the compact set ||a;||e = 1 at a point XQ. SO 
11 ôo 11 = a- If a = 0 then xo = 0 and thus XQ does not belong to the 
unit sphere (in the Euclidean norm). Thus a > 0 and for any x we have 

INI/We>a. • 
We expect that the reader can deal with finite dimensional vectors. 

Now we would like to understand how to work with elements in in
finitely dimensional spaces. The notion of an infinite dimensional vector 
x = (xi, X2,xs,...) with a countable number of components is, of course, a 
straightforward generalization of the notion of a finite dimensional vector 
x = (xi,X2, • • • ,xn). But let us also note that such a vector can be en
countered by considering a numerical sequence {xi] as a whole entity. In 
this case the individual terms Xi of the sequence become the components 
of a vector x. In fact, we shall use the terms "infinite dimensional vector" 
and "sequence" interchangeably. Another way to introduce vectors with in
finitely many components is to consider expansions of functions into series 
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of different types, say Fourier or Taylor expansions. Combining coefficients 
of such an expansion, we get something like a vector with infinitely many 
components. 

Our first infinite dimensional Banach spaces can be formed by imposing 
suitable norms on spaces of infinite dimensional vectors. Such spaces are 
called sequence spaces. For example, we may place under consideration the 
set c of all convergent numerical sequences and impose the norm 

||x|| =sup |x i | . 
i 

An interesting family of sequence spaces can be defined, one for each integer 
p > 1. The space lv is the set of all vectors x such that Y^iL\ lXilP < °°> 
and its norm is taken to be 

/ oo \XIT 

The fact that (3.3.1) is a norm is a consequence of the Minkowski inequality 

/ oo \ l/P / oo \ VP / oo \ VP 

r£\Xi+yi\p\ < (5>*n +(5>iM 

since satisfaction of the other norm axioms for (3.3.1) is evident. An im

portant special case is the space E2 of square-summable sequences x with 

Y^Li lx»l2 < °° a n d norm 

/ o o \ V 2 

H = (X>I 2 ) • 

Looking ahead, we mention that any element in a separable Hilbert space 
H (it is a complete space with an inner product that is similar to the dot 
product in a Euclidean space) can be represented as a Fourier expansion 
with respect to an orthonormal basis, of H, and there is an one-to-one corre
spondence between the elements of H and E2. So all the general properties 
which we could establish for the elements of £2 can be reformulated for a 
separable Hilbert space H and vice versa. We can add that £2 was the 
first space introduced by D. Hilbert that initiated functional analysis as a 
branch of mathematics. 

We emphasize that the normed spaces c and £p are not defined on the 
same underlying set of vectors. For example, the vector x = (1,1,1, . . . ) 
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obviously belongs to c but not to (P for any p > 1. Moreover, there is no 
analog to Theorem 3.3.3 for infinite dimensional spaces. 

There is a subspace of c denoted by CQ that consists of vectors (se
quences) having zero limit. Note that a set of sequences converging to 
some fixed nonzero limit could not be a linear space. If we wish to consider 
the set of all convergent sequences with some nonzero limit, we call it a 
cone. We can restrict a cone to some of its subsets by placing additional 
conditions on the components of vectors. 

It is also possible to introduce weighted spaces of sequences with norms 
of the form 

/ °° \ 1 / 2 

l|x||=fl>M2J 
where the fc; > 0 are constants used to weight the terms of the sequence. 

We can show that all of the spaces mentioned above are Banach spaces. 
Let us show this, for example, for c. To do this we use the fact that the 
normed space consisting of the set K of real numbers under the usual norm 
\x\ is a Banach space. Let {x^fc^} be a Cauchy sequence in c. The kth term 
of this sequence is a numerical sequence: 

x(fe) _ / (*) (fc) (fc) ) 

To each e > 0 there corresponds N = N(e) such that 

||x(n+m) _ x(n) | | c = g u p ^(n+m) _ ^(n) ( < £ 

i 

whenever n > N and m > 0. This implies that 

\x[n+m) - x[n) | < £ for each i (3.3.2) 

whenever n > N and m > 0. Hence {x]3'} is a Cauchy sequence of real 
numbers for any fixed i. By the completeness of the normed space (M, ||-||) 
we know that {a£"} converges (as j —> oo) to a limit, say x*, in K. Now 
let 

X — [Xi,X2,X^, . . .). 

We will show that 

x ( f e ) ^x* . (3.3.3) 
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Fix n > N; by (3.3.2) and continuity 

lim \x\n+m)-x\n)\<e 
m—>oo 

which gives 

\x* — x\n I < e for each i. 

Hence 

S U p | x * - ^ n ) | = | | x * - X ^ | | c < £ 
i 

for n > N, so we have established (3.3.3). Finally we must show that 
x* £ c by showing that {x*} converges. Since every Cauchy sequence of 
real numbers converges, it suffices to show that {x*} is a Cauchy sequence. 
Let us consider the difference 

I T * _ T* I < l-r* _ T(k)\ 4- 1-r.CO _ T(k) I J_ | r (
f c ) _ r * I 

and use an e/3 argument. Let e > 0 be given. We can make the first and 
third terms on the right less than e/3 for any n, m by fixing k sufficiently 
large. For this k, {x^ '} is a Cauchy sequence; hence we can make the 
second term on the right less than e/3 by taking n and m sufficiently large. 

We see here a general pattern common to many completeness proofs. 
We take an arbitrary Cauchy sequence {xn} in (X, d), construct an element 
x that appears to be the limit of {xn}, prove that x G X, and prove that 
Xyi ^ X under d. 

Example 3.3.3 Show that CQ is a Banach space. 

Solution Let {x'fc^} be a Cauchy sequence in Co- The kth term of this 
sequence is a numerical sequence 

x(fc) _ (T(*) T(fc) _(*) \ 

that converges to 0. As we did with a Cauchy sequence in the space c, we 
can show that 

x^fc' —> x* = (xl,X2,x^,...) where x* = lim x/ . 
j—>oo 

(As before, in the process we find that by fixing n sufficiently large we can 
get the inequality \x* — x\n'\ < s to hold for all i.) To complete the proof 
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we must show that x* € c0, i.e., that x\ —> 0 as i —-> oo. Let e > 0 be given. 
We have 

\xi\<\x:-x^\ + \x^\. 

We can fix k large enough that the first term on the right is less than e/2 
for all i. For this k, we can choose i large enough that the second term on 
the right is less than e/2. 

Now let us turn to some spaces of functions. We have introduced the 
space C(tt). If fl is a compact set in R", then C(fi) is a Banach space. In
deed, the Weierstrass theorem states that a uniformly convergent sequence 
of functions defined on a compact set has as a limit a continuous function. 
A sequence of functions {/^(x)} is a Cauchy sequence in C(f2) if to each 
£ > 0 there corresponds N = N(e) such that 

max | / n + m ( x ) - /„(x) | < e 

for any n > N and any positive integer m. This definition means that 
{/n(x)} converges uniformly on f2 and thus its limit point exists and belongs 
to C(fl). (The reader sees that the uniform convergence of a sequence of 
functions in calculus and convergence with respect to the norm of C(fi), 
Q being compact, are the same.) That is, by definition, C(fi) is a Banach 
space. Similarly we can show that C<fe> (ft) is a Banach space. 

We mentioned earlier that on the set of functions continuous on a com
pact set fi we can introduce 

ii/(x)W) = Qj/(x)r^ 
for p > 1. Writing out the corresponding Riemann sums for the integral 
and then using the limit passage, we may show that the triangle inequality 
is fulfilled for this. Fulfillment of the remaining norm axioms is evident. 
Exercise ?? shows that the set of continuous functions under this norm, for 
the case p = 1, is not a Banach space. The situation is the same for any 
p > 1. 

On the set of differentiable functions we can introduce an important 
class of norms called Sobolev's norms. The simplest is one that is called 
the norm of W1-2 [0,1]: 

Wf\\w^[0,i]=[f (\f(x)\2 + \f(x)\2)dx 

••If 
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This was first studied by S. Banach. The general form of a Sobolev norm 
is 

ll/IU^) = U E l ^ / W . V > 1. (3-3.4) 

The set of /-times continuously differentiable functions on D, is not complete 
in the norm (3.3.4). In these norms as well in the LP norms the difference of 
close functions can be very big on subdomains of small area. Later we shall 
introduce other spaces with these norms that will turn out to be Banach 
spaces. 

Example 3.3.4 (a) Show that if a sequence converges, then any of its 
subsequences also converges and has the same limit, (b) Show that if some 
subsequence of a Cauchy sequence has a limit, then the entire sequence 
must converge to the same limit, (c) A set 5 in a normed space X is 
bounded if there exists R > 0 such that ||x|| < R whenever x € S. Show 
that every Cauchy sequence is bounded. 

Solution (a) Let {xnk} be a subsequence of {xn} where xn —» x. Given 
e > 0, we can find TV such that n > N implies d(xn, x) < e. Since nk > k 
for all k, we have d(xnk,x) < e whenever k > N. (b) Suppose that {xnk} 
is a convergent subsequence of a Cauchy sequence {xn}. We show that 
if xnk —• x, then xn —> x. Let e > 0 be given and choose N such that 
d(xn,xm) < e/2 for n,m > N. Since xnk —> x, there exists nk > N 
such that d(xnk,x) < e/2. So for n > N we have d(xn,x) < d(xn,xnk) + 
d(xnk,x) < e/2 + e/2 = e. (c) Let {xn} be a Cauchy sequence. There 
exists N such that 

||a;n - xN+1\\ < 1 

whenever n> N. For all n > N we have 

| |Zn| | < \\xn - XN+i\\ + \\xN+i\\ < Hzjv+lH + I-

Hence an upper bound for ||a;„|| is given by 

B = max{||a:i|| , . . . , ||:rjv|| ,||:r;v+i|| + 1}. 

Example 3.3.5 Show that Rn is complete. 
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Solution Let {x'*'} be a Cauchy sequence in Rn . The fcth term of this 
sequence is an n-tuple 

,(fc) _ t^k) x W = K ' , . . , x W ) . 

Since {x^ ' } is a Cauchy sequence, for each e > 0 there exists N such that 
m> N and p > 0 imply 

<i(x ( m + p ) ,x ( m )) {m+p) _ (rn) 
1/2 

<£• . 

Since all terms in the sum are non-negative, we have 

< e for each i = l,...,n x(m+p) _ x(m) (3.3.5) 

M) i. whenever m > N and p > 0. Hence x\ ' is a Cauchy sequence of reals for 
(i) 

any i = 1 , . . . , n. By the completeness of K we know that x\ converges 
(as j —> oo) to a limit, say x*, in R. Now let 

X — (.3-1, • • • , %n)-

We will show that 

x<fc> - * x * (3.3.6) 

where convergence is understood in the sense of the Euclidean metric on 
Rn . Fix m > N; by (3.3.5) we get 

hence 

So 

lim 
p—>oo 

„("*) 

(m+p) _ (m) 
<e, 

x* — x\ | < £ for each i = 1 , . . . , n. 

^»=i 

1/2 

X; - X 
(m) = d(x*,x(m))< v ^ e 

for m > N, and we have established (3.3.6). We conclude that every Cauchy 
sequence in R™ converges to a point of Rn , hence R™ is complete. 
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Example 3.3.6 The Cartesian product X x Y of two linear spaces X 
and Y can form a linear space under suitable definitions of vector addition 
and scalar multiplication. If X and Y are also normed spaces with norms 
\\-\\x, IHly, respectively, then X x Y is a normed space under the norm 

\\(x,y)\\ = \\x\\x + \\y\\Y. 

Show that if X and Y are Banach spaces, then so is X x Y. 

Solution Choose any Cauchy sequence {{xk,yk)} C X x Y. Then 

IK^mi Mm) ~ (XniVnjWxxY = \\\xrn ~ xniVm ~ Vn/WxxY 

= \\xm - xn\\x + \\ym - yn\\Y -> 0 

as m, n —• oo, hence 

\\xm - xn\\x —> 0 and ||ym - y n | | y —> 0 a s m , n - > o o . 

So {xfc} and {yk} are each Cauchy sequences in their respective spaces 
X, Y; since these are Banach spaces there exist x £ X and y € Y such that 
Xk —> x and yk —» y. Finally, we see that (xk,yk) —* {x,y) in the norm of 
X xY: 

\\(xk,yk)-(x,y)\\XxY = | | (a ; f c-a; ,2/ f c- j / ) | |X x y 

= \\xk ~ x\\x + WVk ~ V\\Y ~* ° as ^ - ^ oo-

3.4 The Completion Theorem 

It is inconvenient to deal with an incomplete space. For example, using only 
rational numbers we leave out such numbers as V2 and 7r, and so cannot 
obtain exact solutions for many quadratic equations or geometry problems. 
Various approaches can be used to introduce irrational numbers. To define 
an irrational number n, we can define a sequence of approximations such 
as 3, 3.1, 3.14, 3.141, and so on. The limit of this sequence is what we 
call 7r. But the approximating sequence 4,3.2,3.142,... also consists of 
rational numbers and can be used to define the same number n. There are 
infinitely many sequences having this same limit, and we can associate this 
set of Cauchy sequences together as an entity that defines TT. We call such 
sequences equivalent. The same can be done with any irrational number. If 
we then regard a real number as something defined by a set of all equivalent 
sequences, a rational number can be represented as a set of all equivalent 
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sequences one of which is a stationary sequence all of whose terms are this 
rational number. We shall use this idea to "extend" an incomplete space 
to one that is complete. In advance we shall introduce several notions. 

Definition 3.4.1 Two sequences {xn}, {yn} in a metric space (M, d) are 
said to be equivalent if d(xn,yn) —> 0 as n —> oo. If {xn} is a Cauchy 
sequence in M, we can collect into an equivalence class X all Cauchy se
quences in M that are equivalent to {xn}. Any Cauchy sequence from X is 
called a representative of X. To any x € M there corresponds a stationary 
equivalence class containing the Cauchy sequence x,x,x, 

Definition 3.4.2 A mapping F: Mi —• Mi is an isometry between 
(Mi,di) and (M2,d2) if d\(x,y) = d2(F(x),F(y)) for all x.y e Mx. Dis
tances are obviously preserved under such a mapping. If F is also a one-to-
one correspondence between M\ and M2, then it is a one-to-one isometry 
and the two metric spaces are said to be isometric. Isometric spaces are 
essentially the same, the isometry amounting to a mere relabeling of the 
points in each space. 

With this terminology in place we can state the important metric space 
completion theorem: 

Theorem 3.4.1 For a metric space M, there is a one-to-one isometry 
between M and a set M which is dense in a complete metric space M*. We 
call M* the completion of M. 

Proof. As we said, we shall use the same idea as above for introducing 
the needed space. The proof consists of four steps: (1) introduction of 
the elements of the space M*; (2) introduction of a metric on this space 
and verification of the axioms; (3) demonstration that the new space is 
complete; (4) verification of the remaining statements of the theorem. 

1. As indicated in Definition 3.4.1, we collect into an equivalence class X 
all Cauchy sequences in M that are equivalent to a given Cauchy sequence 
{xn}. We denote the set of all the equivalence classes by M*, and the set 
of all stationary equivalence classes by M. 

2. We impose a metric on M*. Given X,Y 6 M*, we choose any represen
tatives {xn} G X and {yn} € Y and define 

d{X,Y)= lim d{xn,yn). (3.4.1) 
n—+oo 

This same metric is applied to the subspace M of M*. To see that d(X, Y) 
is actually a metric, we must first check that the limit in (3.4.1) exists and 
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is independent of the choice of representatives. By metric axiom D4 we 
have 

d(xn, yn) < d(xn,xm) + d(xm,ym) + d(ym, Vn) 

so that 

d(xn,yn) - d(xm, ym) < d(xn, xm) + d(ym, yn)-

Interchanging m and n we obtain a similar inequality; combining the two, 
we obtain 

\d(xn,yn) -d(xm,ym)\ < d(xn,xm) + d(yn,ym). 

But d(xn, xm) —> 0 and d{yn, ym) —• 0 as m, n —> oo because {xn} and {yn} 
are Cauchy sequences. Thus 

\d(xn,yn)-d(xm,ym)\->Q a sm, r j -+oo 

and we see that {d(xn,yn)} is a Cauchy sequence in M. By completeness 
of K, the limit in (3.4.1) exists. To show that it does not depend on the 
choice of representatives, we take any {x'n} £ X and {y'n} € Y and show 
that 

lim d(x'n,y'n)= lim d(xn,yn). (3.4.2) 

Because lim„^oo d(xn, x'n) = 0 = limn-^oo d(yn, y'n), the inequality 

\d{xn,yn) - d(x'n,y'n)\ < d(xn,x'n) + d{yn,y'n) 

gives 

lim \d{xn,yn) - d(x'n,y'n)\ = 0 

which implies (3.4.2). We now check that the metric axioms are satisfied 
hyd(X,Y): 

Dl: Since d(xn,yn) > 0 for all n, it follows that 

d(X,Y)= lim d{xn,yn) > 0. 

D2: If X = Y then d(X, Y) = 0 (we can choose the same Cauchy sequence 
{xn} from both X and Y, and since the limit is unique we get the 
needed conclusion). Conversely, if d(X, Y) = 0 then any two Cauchy 
sequences {xn} £ X and {yn} G Y satisfy lim„^0 0d(a;n ,yn) = 0. By 
definition they are equivalent, hence X = Y. 
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D3: We have 

d(X,Y)- lim d(xn,yn) = lim d(yn,xn) = d(Y,X). 
n—>oo n—>oo 

D4: For xn,yn,zn € M the triangle inequality gives 

d(xn, yn) < d(xn, zn) + d(zn, yn); 

as n —> oo we have 

d(X,Y) <d(X,Z) + d(Z,Y) 

for the equivalence classes X, Y, Z containing {xn}, {yn}, {zn}, respec
tively. 

3. To see that M* is complete, we must show that for any Cauchy sequence 
{X1} c M*, there exists 

X = lim X1 e M*. (3.4.3) 
i—*oo 

Indeed, from each X1 we choose a Cauchy sequence {xf } and from 
this an element denoted Xi such that d(xi,Xj ) < \ji whenever j > i. To 
see that {xi} is a Cauchy sequence, we denote by Xi the equivalence class 
containing the stationary sequence (xi,Xi,...) and write 

d(xi,Xj) = d(Xi,Xj) 

< d(Xi:X*) + d(X\Xj) + d{Xj,Xj) 

<-+d(X\Xi) + -. 
i 3 

As i,j —> oo, d(xi,Xj) —> 0 as required. Finally, denote by X the equiva
lence class containing {xi}. Because {xi} is a Cauchy sequence, 

d{Xi,X)<d(Xi,Xi) + d(Xi,X) 

< \+d(Xi,X) 
i 

= — + lim d(xi,Xj) —» 0 as i —» oo. 

This proves (3.4.3). 

4. M is dense in M*. To see this, choose X 6 M*. Selecting a repre
sentative {xn} from X, we denote by Xn the stationary equivalence class 
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containing the stationary sequence (xn, xn,...). Then 

d{Xn,X) = lim d(xn,xm) —> 0 as n —> oo 

since {xn} is a Cauchy sequence. 
The equality 

d(X,Y)=d(x,y) 

if X and y are stationary classes corresponding to x and y, respectively, 
demonstrates the one-to-one isometry between M and M. • 

Corollary 3.4.1 If M is a linear space, the isometry preserves algebraic 
operations. 

Since a normed space is a linear metric space we immediately have 

Theorem 3.4.2 Any normed space X can be completed in its natural 
metric d(x,y) = \\x — y\\, resulting in a Banach space X*. 

We will also make use of the following result: 

Theorem 3.4.3 The completion of a separable metric space is separable. 

Proof. Suppose X is a separable metric space, containing a countable, 
dense subset S. The completion theorem places X into one-to-one corre
spondence with a set X that is dense in the completion X*. Let S be the 
image of S under this correspondence. Since the correspondence is also an 
isometry, S is dense in X. So we have S C X C X*, where each set is dense 
in the next; therefore S is dense in X*. Since S is evidently countable, the 
proof is complete. • 

We have lingered over the completion theorem because it is the back
ground for many important notions we will introduce. These include the 
Lebesgue integral, and the Sobolev and energy spaces. 

3.5 Contraction Mapping Principle 

We know that the iterative Newton method of tangents for finding zeroes of 
a differentiable function g(x) demonstrates fast convergence and is widely 
used in practice. In this method we reduce a given problem to a problem 
of the form 

x = f(x) (3.5.1) 
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and the procedure for rinding zeroes of g(x) is 

Xn+l = !{xn). 

A solution x* of (3.5.1) is such that the value of f(x) at x* is x*, so a 
solution is a fixed point of the mapping / . There are different ways in which 
an equation g(x) = 0 may be reduced to the form (3.5.1), the simplest 
but not the best of which is to represent the equation as x = x — g(x). 
Such a transformation is good only when the iterative procedure of solution 
converges fast enough. It turns out that we can reduce various equations 
of different natures, from systems of equations to boundary value problems 
and integral equations, to forms of the type (3.5.1) so that the iterative 
procedure gives us a good approximation to a solution with few iterations 
required. The methods of reduction of a general equation G(x) = 0 extend 
those known for the simple equation g(x) = 0. In this section we discuss a 
class of problems of the general form 

x = F{x) (3.5.2) 

where F{x) is a mapping on a metric space M, i.e., 

F: M -» M, 

and x £ M is the desired unknown. We see that if x is to satisfy (3.5.2) 
then the image of x under F must be x itself, so we continue to use the 
term "fixed point" in this more general case. 

We would like to use an iterative process to solve equation (3.5.2). The 
iteration begins with an initial value XQ € M (sometimes called the seed 
element) and proceeds via use of the recursion 

xk+1=F{xk) fc = 0 , l , 2 , . . . . (3.5.3) 

Under suitable conditions the resulting values XQ,XI,X2, • • • will form a se
quence of successive approximations to the desired solution. That is, if the 
approach works we will have 

lim Xk = x* 
k—>oo 

where x* is a fixed point of F. With this background, let us formulate 
conditions providing the applicability of the method. 
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Definition 3.5.1 Let F(x) be a mapping on M. We say that F(x) is a 
contraction mapping if there exists a number a € [0,1) such that 

d(F(x),F(y))<ad(x,y) (3.5.4) 

for every pair of elements x, y £ M. 

We see that repeated application of (3.5.4) yields 

d(xk+i,xk) < akd{xi,xQ), k = 0,1, 2 , . . . , 

and with 0 < a < 1 the successive iterates will land closer and closer 
together in M. We might expect these iterates to converge to a solution; 
rigorous confirmation that they do is provided by the following celebrated 
result due to Banach. It is known as the contraction mapping theorem. 

Theorem 3.5.1 A contraction mapping F with constant a, 0 < a < 
1, on a complete metric space M has a unique fixed point. Convergence 
of successive approximations to the fixed point occurs independently of the 
choice of seed element. 

Proof. Let us choose an arbitrary seed element XQ & M for the recursion 
(3.5.3). Using the triangle inequality for several elements, for m > n we 
have 

d(xm,xn) < d(x )+d(x )-{ \-d(xn+2, xn+i)+d(xn+i, xn) 

hence 

d(xm,xn) < (a"1'1 + am~2 + ••• + an+1 + an)d{Xl,a;0) 

= a n ( l + a + • • • + am'n-2 + a " - " - 1 ) ^ ! , ^ ) 

< a" ( l - a)~1d(xi,xiy) 

—* 0 as n —> oo. 

In this, we summed up the geometrical progression. So {xh} is a Cauchy 
sequence, and by completeness of M there is a point x* G M such that 

k —* oo. From the contraction condition for F it follows that 
F(x) is continuous on M, hence 

x* = lim F(xfc) = F ( lim xk) = F{x*). 
k—>oo \fc—>oo / 
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We have therefore established the existence of a fixed point of F(x). Unique
ness is proved by assuming the existence of another such point y*. Then 

d(x*,y*) = d(F(x*),F(y*)) < ad(x*,y*) 

so that 

(l-a)d(x*,y*) = 0. 

But a < 1, so we must have d(x*,y*) = 0. Hence x* — y* and the proof is 
complete. • 

The proof of the contraction mapping theorem also provides information 
concerning the rate of convergence of the iterates Xk to x*. Specifically, we 
have 

Corollary 3.5.1 Let F(x) be a contraction mapping on a complete metric 
space M. Then the estimates 

an 

d(xn,x*)<- d(xi,xo) (3.5.5) 
1 — a 

and 

d(xn,x*)<- d(xn,xn-{) (3.5.6) 
I — a 

both hold for n = 0 ,1 ,2 , . . . , where a is the contraction constant for F(x) 
and x* is the fixed point of F. 

Proof. In the inequality 

a™ 
d(xm,xn) < d(xi,x0) 1 — a 

we can pass to the limit as m —> co and obtain (3.5.5). If on the right-hand 
side of (3.5.5) we take XQ to be xn-i, then x\ becomes xn and we obtain 
(3.5.6). D 

The inequality (3.5.5) is known as an a priori error estimate, since 
it provides an upper bound on d(xn,x*) in terms of quantities known at 
the start of the iteration procedure. Inequality (3.5.6) is known as an a 
posteriori error estimate, and can be used to monitor convergence as the 
iteration proceeds. 
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The contraction mapping principle can be applied to a variety of prob
lems. Consider a (possibly finite dimensional) system of linear equations 

oo 

Xi = y ttijXj ~T Ci yl = 1 , Z, o , . . .). 

To solve this problem by iteration we can write 

x(fc+D= F ( x(fc)) = A(x(fc)) + c 

where c = (c\, c%, C3,...) is a given vector, {x^fc^} is a sequence of vector 
iterates 

x(°) = (40),40),40),--.), 

x ( 2 ) _ /_(2) _(2) (2) x 

and A is the mapping given by 

( 00 00 00 

j = i j=i 3=1 

We should note that the possibility to employ iteration (and even simply to 
solve the system) depends on the space in which we wish to find a solution. 
Here we shall suppose that c belongs to the space £°°, which is the space 
of all bounded sequences under the norm 

llxlloo =sup|a:i | . 

For the operator A to act in i°° it is sufficient that the quantity 

K = sup2_. \aii\ 
&1 j = i 

is finite. This follows from the fact that c e £°° and the next chain of 
inequalities, with which we will determine when F is a contraction on £°°. 
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We have 

| | F ( x ) - F ( x ' ) | | 0 0 = s u p 

sup 
i > l 

< sup 

oo 

/ j aij \xj ' 

/ 
1 sup |xj -

-*;•) 

oo 

^ s u p V l a i j U x j 

\ / °° \ 

-4i J IXXil 

- a ; ' 

hence 

= sup V^ \aij\ I sup |XJ - x'j 

\\F(X)-F(X')\\00<K\\K-X'\ 

With K < 1 we have a contraction and Banach's theorem applies. 
In other sequence spaces the appropriate conditions for &ij a l e different. 

It is left as an exercise to treat the problem for iterations and a solution in 
the space £2. 

Before treating the next example let us state another corollary to the 
contraction mapping theorem. By Fk we denote the fc-fold composition of 
the mapping F: that is, we have 

Fn+1(x)=F(Fn(x)), n = 1 ,2 ,3, . . . , 

where it is understood that F1 — F. 

Corollary 3.5.2 / / Fk is a contraction mapping on a complete metric 
space for some integer k > 1, then F has a unique fixed point. Conver
gence of successive approximations occurs independently of the choice of 
seed element. 

Proof. Fk has a unique fixed point x* by Theorem 3.5.1; moreover, 

lim (Fk)n(x) = x* 
n—*oo 

for any x G M. Putting x = F(x*) we obtain 

x* = lim (Fk)nF(x*) = lim F(Fk)n{x*) = lim F(x*) = F(x*), 
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hence x* is also a fixed point of F. (Here we have used the assumption 
that x* is a fixed point of Fk, hence it is a fixed point of (Fk)n, hence 
(Fk)n(x*) = x*.) If y* is another fixed point of F, then y* is also fixed 
point of Fk, hence y* = x*. • 

We now proceed to our second example. An integral equation of the 
form 

x)=g{x)+X K(x,t)ip(t)dt, xe[a,b], (3.5.7) 
J a 

1>( 

where ip(x) is unknown, is said to be a Volterra integral equation. We 
suppose that g(x) is continuous on [a, b), and that the kernel K(x,t) is 
continuous on the closed, triangular region a < t < x, a < x < b. Let us 
show that the mapping F given by 

F[ip(x)} = g(x) + A J K(x, t)^{t) dt 
J a 

will generate convergent successive approximations by iteration in C(a,b); 
our approach to this will be to prove that Fn is a contraction mapping for 
some integer n > 1. First, let u(x) and v(x) be any two elements of C(a, b) 
and observe that 

\F[v(x)] - F[u{x)}\ < |A| f \K(x,t)\\v(t) - u(t)\ dt. 
J a 

Now K(x, t), being continuous on a compact set, is bounded by some num
ber M. So 

\F[v(x)] - F[u(x)}\ < \\\M f \v(t) - u{t)\dt 
J a 

< \X\M max \v(t) - u(t)\ / dt 
te[a,b] Ja 

= \X\M(x-a)d(v,u). (3.5.8) 

We now show by induction that 

\Fn[v(x)} - Fn[u(x)]\ < |AlnMn ^ ~ " ) " d(v, u), n = 1,2 ,3 , . . . . (3.5.9) 
n 

The case n = 1 was established in (3.5.8). Assuming (3.5.9) holds for n = k, 
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we have 

\Fk+1[v(x)} - Fk+1[u(x)}\ < |A| f |K(a:,t)| |Ffc[t,(t)] - Ffc[u(*)]| dt 
•la 

<|A|M f |A| 
J a 

kMk{t ,,a)fc d(v,u)dt 
k\ 

\fc+i 

= | A | f c + l M f e + 1 l fcTT)T d ( u ' u ) ' 

which is the corresponding statement for n — k + 1. Taking the maximum 
of (3.5.9) over x € [a, b] we get 

d ( F > ] , F > ] ) < \\\nMn{-b~^n d{v,u). 
TV. 

For any A we can choose n so large that 

|A|"M" ( 6~, f f l )" < 1, 

so F™ is a contraction mapping for sufficiently large n. By Corollary 3.5.2 
then, (3.5.7) has a unique solution that can be found by successive approx
imations starting with any seed element. The usual choice for seed element 
is tp(x) = g(x). 

Example 3.5.1 An integral equation of the form 

tp(x)=g(x) + X K(x,t)tp(t)dt {a<x<b), 
J a 

is called a Fredholm equation of the second kind. Suppose that g(x) is 
continuous on [a,b], and that K(x,t) is continuous on the square [a, b] x 
[a, b}. Find a condition on A for the equation to be uniquely solvable by 
iteration in the space C(a,b). 

Solution We need the integral operator 

F(ip(x)) =g(x) + \ f K(x,t)ip(t)dt 
J a 

to be a contraction mapping on C[a, b}. Now K(x,t), being continuous on 
a compact set, is bounded by some number B say. Hence if u(x) and v(x) 
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be arbitrary elements of C[a, b], we have 

d(F(u),F(v))= max X K(x,t)[u(t) - v(t)]dt 
*€[a,&] Ja 

< max |A| / \K{x,t)\\u{t)-v(t)\dt 
x£[a,b] Ja 

< B\X\ max / \u(t) -v(t)\dt 
xe[a,b] Ja 

< B\X\(b — a) max \u(x) — v(x)\ 
x6[a,6] 

= B\X\(b-a)d(u(x),v(x)). 

So F will be a contraction on C[a, b] if we require that |A| < l/B(b — a). 

Note that for application of the Banach principle we do not need the 
space to be linear. This fact is used in the solution of nonlinear problems 
which can have several solutions. The principle is applicable in cases when 
it is possible to find a domain M\ in the original space M such that M\ is 
a complete metric space, the operator A acts in Mi, and is a contraction 
on it. 

3.6 Lp Spaces and the Lebesgue Integral 

To introduce the Lebesgue integral and the corresponding Lp(fl) spaces, we 
will apply the completion theorem to the set of functions that are continuous 
on f2. 

Let f2 be a closed and bounded (i.e., compact) subset of R™, and fix 
p > 1. The set S of functions / (x) that are continuous on ft becomes a 
normed space under the norm 

I/P 

ll/(x)||p=(/j/(x)|pdfi) \ (3.6.1) 

It is therefore also a metric space under the natural metric 

dp(/(x), f l(x)) = | | / ( x ) - f l (x ) | | J ) . 

In these equations the integral is an ordinary Riemann integral. We saw 
in Example 3.3.1 that a sequence of continuous functions on [0,1] can be a 
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Cauchy sequence with respect to the metric 

ll/-ffll= / \f(x)-g(x)\dx 
Jo 

and yet lack a continuous limit. More generally, the metric space formed 
using S and the metric dp(f,g) for p > 1 is incomplete. The completion of 
this space is called Lp(fi). The elements of Lp(fi) can be integrated in a 
certain sense; although we have used Riemann integration in the definition, 
on the resulting space we shall end up introducing a more general type of 
integration. Our approach to the Lebesgue integral will be different from, 
but equivalent to, the classical one due to Lebesgue. The Lebesgue integral 
extends the notion of the Riemann integral in the sense that for an element 
corresponding to a usual continuous function the Lebesgue integral equals 
the Riemann integral. 

In this section we shall denote an element of LP(Q) using uppercase no
tation such as .F(x). An element ^(x) € LP(Q) is, of course, an equivalence 
class of Cauchy sequences of continuous functions. In this case "Cauchy" 
means Cauchy in the norm ||-|| , and two sequences {/„(x)} and {<7„(x)} 
are equivalent if 

ll/n(x) - 5n(x)||p -> 0 as n -> oo. 

Linear space operations may be carried out in the space Lp(f2). If F(x) € 
LP(Q) and A is a scalar, we take XF(x) G LP(Q) to be the element for 
which {A/n(x)} is a representative whenever {/«(x)} is a representative 
of -F(x). A sum such as F(x) + G(x) is interpreted similarly, in terms of 
representative Cauchy sequences. 

The main goal of this section is to define the Lebesgue integral 
j Q F(x) dD, for F(x) e Lp(fi). We will do this in such a way that if F(x) 
belongs to the dense set in Lp(0) that corresponds to the initial set of 
continuous functions, then the value of this new integral is equal to the 
Riemann integral of the continuous preimage. In the process we shall make 
use of Holder's inequality 

Jn\f(x)g(x)\ dQ < ( ^ l / W I P d « ) " Q f | s ( x ) | * dfi) ' (3.6.2) 

which holds under the conditions £ + i = l , p > 1. This is a consequence 
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of the corresponding inequality 

oo / oo \ 1 / P / o o 1/9 

written for the Riemann sums. See Hardy [Hardy, Littlewood, and Polya 
(1952)] for further details. Let us mention that for nontrivial / ( x ) and g(x) 
the sign of equality in (3.6.2) holds if and only if there is a positive constant 
A such that | / (x ) | = A|<?(x)| almost everywhere. A consequence of (3.6.2) 
is Minkowski's inequality 

| | / ( x ) + 5 ( x ) | | p < | | / ( x ) | | p + | |5(x) | |p , 

from which the useful result 

l l / ( x ) | | p - | | f f ( x ) | | p | < | | / ( x ) - 5 ( x ) | | p 

is easily obtained. 
We begin by denning the integral Ju \F{x)\p dfl for F(x) € LP(Q). We 

take a representative Cauchy sequence {/n(x)} from F(x) and consider the 
sequence {Kn} given by 

* n = | | / n ( x ) | | p . 

This is a Cauchy sequence of numbers; indeed 

\Km-Kn\ = \\\Ux)\\p-\\fn(x)\\p 

< | | / m ( x ) - / „ ( x ) | | p - » 0 a s m , n - > o o . 

Because {Kn} is a Cauchy sequence in K or C, by completeness there exists 
a number 

K = lim Kn = lim ( / \fn(x)\p d£l 
1/p 

It can also be shown that K is independent of the choice of representative 
sequence. If {/„(x)} is another representative of F(x), i.e., if 

then we can set 

| | / n ( x ) - / „ ( x ) | | p - > 0 , 

K = lim Kn = lim ||/„(x) 
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but subsequently find that 

\K-K\--

= lim 

lim ||/„(x)|| - lim | | /„(x)| |p 

l l / n ( x ) | | p - | | / n ( x ) | | p 

< lim | | / „ ( x ) - / n ( x ) | | p = 0 
n—>oo 

The uniquely determined number Kp, 

KP lim ( f \fn(x)\"dSl) = lim [\fn(x)\p<m 

is defined as the Lebesgue integral of |F(x) |p . That is, we have 

/ \F(x)\pdQ = lim f \fn(x)\pdQ 
Jn " - 0 0 Jo. 

where {/„(x)} is any representative of F(x). 
We now show that when fi is compact the Lp spaces are nested in the 

sense that 

Lp(n) C Lr(Q.) whenever 1 < r < p. 

Let q be such that i + - = 1 and apply Holder's inequality: 

r ft \1/g ( r \ r / p 

/ i.|/(x)|rdn <( l'dn) / |/(x)|"dn 
Jo, \Jn J V s i 

= (mesfi)1-p ( J \f(x)\pdn 

(3.6.3) 

r / p 

or 

| | / (x ) | | r <(mesn)"? | | / (x ) (3.6.4) 

where mes Q = JQ 1 dfi is the measure3 of fi. Putting / (x) = / n (x ) — / m (x ) 
in (3.6.4), we see that {/n(x)} is a Cauchy sequence in the norm ||-||r if it is 
a Cauchy sequence in the norm ||-|| . Putting / (x) = /„(x) — gn(x), we see 

3Because we use the Riemann integral to construct the Lebesgue integral, we must 
exclude some "exotic" domains CI that are actually permitted in Lebesgue integration. 
But physical problems involve relatively simple domains for which Riemann integration 
generally suffices. In particular we shall assume that the Riemann integral fn 1 dQ exists 
for all of our purposes, giving the quantity we are calling the "measure" of O. The full 
notion of Lebesgue measure is far too involved to consider here; fortunately, our domains 
are all simple enough that we can use the notation "mes CI" without a full chapter of 
explanation! 

file:///k-k/--
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that any two Cauchy sequences equivalent in the norm ||-|| are equivalent 
in the norm Hence 

F(x) e L*(n) F(x) € Lr{ty 

for 1 < r < p, and we have established (3.6.3). We thus observe that if 
F(x) € LP(n) then JQ |F(x) | r d£t is defined for any r such that 1 < r < p. 
Moreover, putting / (x) = /„(x) in (3.6.4) we see that passage to the limit 
as n —> oo gives 

| | F ( x ) | | p < ( m e s n ) " 5 | | F ( x ) 1 < r < p. 

Subsequently will interpret this by saying that Lp(Cl) imbeds continuously 
into Lr(Q). That is, the elements of Lp(fi) belong to Lr(f2) as well, and 
the inequality means continuity of the correspondence (imbedding opera
tor) between the elements of Lp(Cl) and the same elements considered as 
elements of Lr(Q). In a similar way we can show that many inequalities 
satisfied by the Riemann integral are also satisfied by the Lebesgue integral. 

It is now time to introduce the Lebesgue integral 

/ F(x) dn 

for F(x) € JLP(Q). Taking a representative {/n(x)} from F(x) , we use the 
modulus inequality 

/"/(x)dn < / | /(x)|dn, 
Jn Jn 

to show that the numerical sequence {JQ / n (x) dQ,} is a Cauchy sequence: 

/ /n(x) dn- f /m(x) dn = / [/n(x) - /ro(x)] dn 
JQ Jn JQ 

< /|/„(x)-/m(x)|dn 

< ( m e s f i ) 1 - p | | / n ( x ) - / m ( x ) | | p 

0 as m, n —• oo. 

The quantity 

[ F(x)dn= lim / / n ( x ) dfi 



Functional Analysis 197 

is uniquely determined by F(x) and is called the Lebesgue integral of F(x) 
over fl. If the element JF(X) happens to correspond to a continuous function, 
then the Lebesgue integral equals the corresponding Riemann integral. Of 
course, it is important to understand that F(x) is not a function in the 
ordinary sense: it is an equivalence class of Cauchy sequence of continuous 
functions. Nevertheless, for manipulative purposes it often does no harm to 
treat an element like F(x) as if it were an ordinary function; we may justify 
this by our ability to choose and work with a representative function that is 
defined uniquely by some limit passage. With proper understanding we can 
also relax our notational requirements and employ lowercase notation such 
as / (x ) for an element of LP(Q). We shall do this whenever convenient. 

The Lebesgue integral satisfies the inequality 

[ F{x)d£l ^ ( m e s f ^ H F M I I , , , 
1 1 

= 1. 
m • p q 

This results directly from passage to the limit n —> oo in 

/ /n(x; 
Jn 

)dn < (meatl)1-* \\fn(x)\\ . 

It can also be shown that a sufficient condition for existence of the integral 

/ ^(x)G(x) dfl 

is that F(x) € Lp(Cl) and G(x) € Lq(Q) for some p and q such that A + - = 
1. In this case Holder's inequality 

f i?(x)G(x) <Kl <( [ |F(x) |p dn ) ( f \G(x)\q dtt 
1/9 

is valid, and equality holds if and only if F(x) = AG(x) for some A. 
If p > 1, then LP(Q) is a Banach space under the norm 

l|F(x)||p = QfV(x)|*dn 
1/p 

(3.6.5) 

Verification of the norm axioms for ||.F(x)|| is mostly straightforward, de
pending on limiting operations of the type we have already seen. To verify 
the triangle inequality 

||F(x) + G(x ) | | p < | |F (x ) | | p + | |G(x)| |p , 
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for instance, we simply write ||/„(x) + gn{x)\\p < | | /n(x)| |p + ||3n(x)||p 

for representatives {/„(x)} and {gn(x)} of F(x.) and G(x), and then let 
n —> oo. In fact the validity of this is a consequence of the completion 
theorem, but we wished to prove it independently. The only norm axiom 
that warrants further mention is 

| |F(x)| |p = 0 <=* F(x) = 0. 

The statement "F(x) = 0" on the right means that the stationary sequence 
(0,0,0, . . . ) , where 0 is the zero function on Q,, belongs to the equivalence 
class F(x). So LP(Q) is indeed a normed linear space. That it is a Banach 
space follows immediately by its construction via the metric space comple
tion theorem. According to the completion theorem Lp(fi) is complete in 
the metric 

d(F(x),G(x)) = lim ( / |/„(x) -gn(x)\p cM 

= QjF(x)-G(x)|pdft 

which of course coincides with the metric induced by the norm (3.6.5). 
We began our development with the base set S of continuous functions 

on Q, and introduced Lp(fi) as the completion of S in the norm (3.6.1). We 
have introduced the Lebesgue integral in such a way that for any element 
of LP{Q) it is the unique number that coincides with Riemann integral of 
/ if F corresponds to a continuous function / in the base set. In addition 
to the fact that the Lebesgue integral is defined for a wider set of functions 
than the Riemann integral, the Lebesgue integral is more convenient for 
performing operations involving limit passages. These operations include 
such important manipulations as taking the limit of an integral with respect 
to a parameter in the integrand (Lebesgue's theorem) and interchanging the 
order of integration in a repeated integral (Fubini's theorem). The theory 
of Riemann integration is based on the notion of Jordan measurability of 
a set in K". The classical theory of Lebesgue integration starts with the 
introduction of a wider notion of measurability of a set of R™. In particular, 
under this definition the set of all rational points on the segment [0,1] is 
measurable and its Lebesgue measure is zero. These considerations are 
outside the scope of this book, and the interested reader should consult 
standard textbooks in real analysis for details. Lebesgue integration is not 
only useful in itself, but it finds applications in the theory of Sobolev spaces, 

i / p 

J./P 
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and to the generalized setup of boundary value problems. 

Example 3.6.1 Show that Lp(f2) is separable for compact ft. 

Solution First we show that the space of continuous functions with the 
V metric is separable. We know that the set Pr(ft) of polynomials denned 
on ft and having rational coefficients is dense in C(ft), where C(ft) is the 
space of continuous functions under the metric 

| | /(x) - g(x)\\c(a) = max| / (x) - g(x)\. 

This follows from the classical Weierstrass theorem. Therefore for any / (x) 
continuous on ft we can find p£(x) 6 -Pr(ft) such that 

max | / (x) - p e ( x ) | < T ^ . , , . 
xefi u v ; yeK n ~ (mesft)1^ 

(Here we see why the domain ft was required to be compact.) Therefore 
we have 

ll/(x) - *(x) | | = ( / n |/(x) - Pe(x)|> dn)1 / P < ( ^ I dn) VP = e. 

So imposing the IP metric on the space of functions continuous on f2, we 
get a separable metric space. Furthermore, Lp(Cl) is the completion of this 
space. Since the completion of a separable metric space is separable, the 
conclusion follows. 

3.7 Sobolev Spaces 

We now proceed to some normed spaces that play an important role in the 
modern treatment of partial differential equations. On the set of I times 
continuously differentiable functions / (x) given on a compact set ft, we 
have introduced the family of norms 

I / P 

Ti\D
af\"dn\ , p>l. (3.7.1) 

The resulting normed spaces are, however, incomplete in their natural met
rics. Applying the completion theorem to this case (in the same way we 
produced the Lebesgue spaces Lp(fl)), we obtain a family of Banach spaces 
known as the Sobolev spaces Wl,p{Q). The form of the norm (3.7.1) suggests 
that the elements of a Sobolev space possess something like derivatives. We 
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shall discuss these generalized derivatives momentarily, but at this point 
(3.7.1) seems to indicate that they belong to the space Lp(£l). Because 
Wl,p(Ci) is a completion of the separable space C'^(fi), Theorem 3.4.3 
gives us 

Theorem 3.7.1 Wl<p(£l), p>l, is a separable normed space. 

We can use the following definition for a generalized derivative. For 
u € LP(Q), K.O. Friedrichs called v s Lp(0) a strong derivative Da(u) if 
there exists a sequence {f„}, fn S C^°°'(0), such that 

/ |u(x) - <p„(x)|p dSl -> 0 and 
Jn 

f |v(x) - D > „ ( x ) | p dQ->0 as n -» oo. 
Jn 

Since C<°°)(fi) is dense in any C^k\n), we see that an element of Wm'p(fl) 
has all strong derivatives up to the order m lying in LP(D,). Note that in this 
definition we need not define intermediate derivatives as is done for standard 
derivatives. But this definition does not seem too classical or familiar. In 
his original monograph [Sobolev (1951)] S.L. Sobolev introduced the notion 
of a generalized derivative using the ideas of the calculus of variations. He 
introduced this for elements of Lp(f2) (not for just any element of course, but 
for those elements for which it can be done). S.L. Sobolev called v € Lp(£l) 
a weak derivative Dau of u G LP(Q) if for every function <p(x) S T> the 
relation 

/ u (x )D>(x )d f i = ( - 1 ) H f u(xV(x)dft 
Jn Jn 

holds. Here V is the set of functions that are infinitely differentiable on 
Q. and that vanish in some neighborhood of the boundary of Q (the neigh
borhood can vary from function to function). This definition of derivative 
inherits some ideas from the calculus of variations: in particular, the Fun
damental Lemma insures that we are defining the derivative in a unique 
way. For elements of Wl'p(Q.) it can be demonstrated that the two notions 
of generalized derivative are equivalent. Of course, the name "generalized 
derivative" is warranted because classical derivatives (say, of functions con
tinuous on O) are also generalized derivatives, but not vice versa. 

The most important result obtained by S.L. Sobolev is called the the
orem of imbedding. It gives some properties of the elements of Sobolev 
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spaces and, in particular, relates them to continuously differentiable func
tions. An example of an imbedding can be seen from the estimate 

ll/(x)|| q < p, (3.7.2) 

which can be shown for any / G Wl'p(Q,) to hold with a constant mqp that 
depends on q, p, and fl only. Note that for q < p we have 

/(x) e wl*(n) =* /(x) e w'*(n); 

hence the Sobolev space Wl'p(Q,) is a subset of the Sobolev space Wl,q(Q): 

Wl>p{fl) C W^9(ft), c? < p. 

But the estimate (3.7.2) gives us more than just this subset inclusion. We 
met inclusions of this type when considering the LP(Q) spaces. We called 
them imbeddings. Now we introduce a general definition of this term. 

Definition 3.7.1 The operator of imbedding from X to Y is the one-
to-one correspondence between a space X and a subspace Y of a space Z 
under which we identify elements x G X with elements y G Y in such a 
way that the correspondence is linear. If, besides, the correspondence is 
continuous so that 

IMIy <m\\x\\x 

for some constant m that does not depend on x, then we call it the contin
uous operator of imbedding. We sometimes employ the notation 

X<-*Y, 

to indicate the existence of an imbedding from X to Y. 

Some words of explanation are in order here. The reader should note 
that the formal definition of a continuous imbedding operator does not differ 
from that of a continuous linear operator. However, the term "imbedding" 
is reserved for situations in which we identify an element in X with its image 
in Y, and thereby effectively consider the "same element" as a member of 
two different spaces. (In this way an imbedding operator acts somewhat like 
the identity operator that serves to map elements of a space into themselves; 
the difference is that in the case of an identity operator the domain and 
range must be the same space.) The degree to which one may take literally 
the "identification" process between elements of X and their images in Y 
depends on the specific type of imbedding under consideration. In some 
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instances we shall see that the elements of X and Y are of the same basic 
nature (e.g., both are ordinary functions); in other instances this may not be 
the case (e.g., the elements of Y may be functions while the elements of X 
are equivalence classes of Cauchy sequences of functions). Note, however, 
that even when the elements of Y and X are of the same nature, the 
norms associated with the spaces Y and X may be very different. Finally, 
we remark that there are imbedding operators that are compact and not 
merely continuous. We shall state this when it applies, but shall relegate 
coverage of compact operators to a later section of this chapter. 

Returning to our discussion of Sobolev spaces, we see that the space 
Wl'p(Cl) is continuously imbedded into the space Wl'q(Cl) when q < p, and 
we write 

Wl'p(Q.) <-* Wl'q{Q), q<p. 

We are also interested in continuous imbeddings from Sobolev spaces into 
the spaces of continuously differentiable functions. To obtain a relevant 
example of an imbedding theorem let us consider the simple Sobolev space 
W1 '1(0,1), the norm of which is 

l l / ( s ) l l M = f\\f(x)\ + \f'(x)\)dx. (3.7.3) 
Jo 

So W1 '1(0,1) is the completion with respect to the norm (3.7.3) of the set 
of all functions that are continuously differentiable on [0,1]. Let f(x) be 
continuously differentiable on [0,1]. Then for any x,y G [1,1] we have 

f(x)-f(y)= f/'(*)< 
Jy 
. . ,)dt 

Jy 

and so 

!/(*)!< l/(y)l + [Xf'(t)dt <\m\+ [l\f(t)\dt. 
Jy JO 

Integrating this in y over [0,1] we get 

/ \f(x)\dy< f \f(y)\dy+ f f \f'(t)\dtdy 
Jo Jo Jo Jo 

max 
x6[0 

<\f(x)\< [l\f(y)\dy+ f1\f'(t)\dt = \\f(x)\\hl. (3.7.4) 
i] Jo Jo 
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Now let F(x) be an equivalence class from W 1 ' 1 ^ , 1). A representative of 
F(x) is a Cauchy sequence {fn(x)} of continuously differentiable functions, 
and we have 

max \fn+m(x) - fn(x)\ < | | /„+m(:r) - /n(z)lli i ; 
x6[0,l] 

it follows that {fn(x)} is a Cauchy sequence in C[0,1] as well, and thus has 
a limit that is continuous on [0,1]. Prom (3.7.4) it also follows that this 
limiting function does not depend on the choice of representative sequence 
of the element of W1A(0,1). Hence we have a correspondence that is clearly 
linear, under which to an element F(x) € Wl'l{Q, 1) there corresponds a 
unique element f(x) € C(0,1) such that 

ll/(a)llc(o,i) < l l ^ ) l l i , i -

We identify this limit element with F, and call F by the name of this 
limit element. (We can really regard F as this element / if / is continu
ously differentiable on [0,1] so there is a stationary representative sequence 
(/> />/>•• •) from F.) In short, we have 

W1'1(0,1)^C(0,1). 

Similar results for Wl'p(Q), where Q is a compact subset of R", are called 
Sobolev's imbedding theorems. We shall state one such theorem next. We 
assume that fi satisfies the cone condition: there is a finite circular cone in 
Rn that can touch any point of d£l with its vertex while lying fully inside 
fl (i.e., translations and rotations of the cone are allowed, but not changes 
in cone angle or height). 

Theorem 3.7.2 Let flr be an r-dimensional piece-wise smooth hypersur-
face in fi. The imbedding 

Wm'p{n) ^ Lq(nr) 

is continuous if one of the following conditions holds: 

(i) n > mp, r > n — rap, q < pr/(n — mp); 
(ii) n = mp, q is finite with q > 1. 

It is compact if 

(i) n > mp, r > n — mp, q < pr/(n — mp) or 
(ii) n = mp and q is finite with q>\. 
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If n < mp then 

wm>p(si)^c{kXsi) 

for integers k such that k < (mp — n)/p, and the imbedding is continuous. 
It is compact if k < (mp — n)/p. 

Although this theorem is appealing because of its generality, we shall 
make use only of special cases involving Wl'2(£l) and W2'2(Q). The follow
ing special case is used for problems of equilibrium of membranes and 2-D 
elastic bodies: 

Theorem 3.7.3 Let 7 be a piecewise differentiate curve in a compact 
set S l c R 2 . For any finite q > 1, there are compact (hence continuous) 
imbeddings 

W1-2^) «-> L9(fi), W l i 2 (n) -> L«(7). 

For use with problems of equilibrium of plates and shells, we have 

Theorem 3.7.4 Let Q, be a compact subset 0/R2 . Then there is a con
tinuous imbedding 

W2'2(Sl) ^ C(fi). 

For the first derivatives, the imbedding operators to Lq(Q) and Lq(-y) are 
compact for any finite q > 1. 

The next result is used for problems of equilibrium of 3-D elastic bodies 
and dynamic problems for membranes and 2-D elastic bodies. 

Theorem 3.7.5 Let 7 be a piecewise smooth surface in a compact set 
S ) C l 3 . The imbeddings 

wh2(n) ^ Li(n), 1 < q < 6, 
W1'2(n)^L"{-y), l < p < 4 , 

are continuous. They are compact if 1 < q <6 or 1 < p < 4, respectively. 

Example 3.7.1 Show that lq is continuously imbedded into £p if p > q. 

Solution The first step is to show that the norms ||-|| and ||-|| of the 
spaces £p and lq satisfy ||x|| < ||x|| whenever p > q (Exercise 3.8). This 
gives the subset inclusion tq C l? whenever p > q, and also shows that 
lq ^> tv with a constant m = 1 in the imbedding inequality. 
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3.8 Compactness 

Definition 3.8.1 Let S be a subset of a metric space. We say that S is 
precompact if every sequence taken from S contains a Cauchy subsequence. 

Any bounded set in M.n is precompact. We know this from calculus, 
where the classical Bolzano-Weierstrass theorem asserts that any bounded 
sequence from W1 contains a Cauchy subsequence. This is not necessar
ily the case in other spaces, however (see Theorem 3.8.4). In § 3.3 we 
introduced c, the space of convergent numerical sequences with norm 

||x|| = sup|a;i|. 
i 

The sequence of elements 

x1 = (1,0,0,0, . . . ) , 

x2 = (0,1,0,0, . . . ) , 

x 3 = (0,0,1,0, . . . ) , 

taken from c has no Cauchy subsequence, since for any pair of distinct ele
ments Xi,Xj we have ||XJ — Xj|| = 1. Nonetheless, this sequence is bounded: 
we have ||XJ|| = 1 for each i. So we see that the Bolzano-Weierstrass theo
rem for M.n does not automatically extend to all other normed spaces. 

What is the principal difference between a bounded set in c and a 
bounded set in R"? In K", using, say, three decimal places, we can approx
imate all the coordinates of any point of the unit ball up to an accuracy 
of 0.001. There are a finite number of points lying within the unit ball 
whose coordinates are the approximated coordinates of the actual points 
(the reader could calculate the actual number of such points for a space of 
n dimensions). Increasing accuracy through the use of m decimal places, 
m > 3, we again have a finite number of points with which we can better 
approximate any point of the unit ball. In c, as is shown by the above 
example, such an approximation of all the points of the unit ball by a finite 
number of elements within a prescribed precision is impossible. 

Let us introduce the abstract variant of an approximating finite set for 
some given set of points: 

Definition 3.8.2 Let S and E be subsets of a metric space. We call E a 
finite e-net for S if E is finite and for every x € S there exists e € E such 
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that d(x,e) < e. We say that S is totally bounded if there is a finite e-net 
for S for every e > 0. 

Note that a set is totally bounded if when we draw a ball of radius e 
about each point of an e-net of the set, then the set is covered by the union 
of these balls (i.e., any point of the set is a point of one of the balls). 

In particular, if a set is totally bounded, it is bounded. Indeed taking a 
1-net we get a finite collection of balls that covers the set. It is clear that 
there exists some ball of finite radius that contains all these balls inside 
itself, and so all the points of the initial set, and this implies that the initial 
set is bounded. 

We see that total boundedness of a set is exactly the same property that 
we described for a ball of K™, on the existence of finite sets of points with 
which we can approximate the coordinates of any point of the ball within 
any prescribed accuracy. We declared that this was a crucial property in 
determining whether a set is compact. This is confirmed by the following 
Hausdorff criterion. 

Theorem 3.8.1 A subset of a metric space is precompact if and only if 
it is totally bounded. 

Proof. Let S be a precompact subset of a metric space X. To show that 
S is totally bounded, we prove the contrapositive statement. Suppose that 
S has no finite eo-net for some particular eo > 0. This means that no finite 
union of balls of radius eo can contain S. Taking x\ € S and a ball B\ of 
radius eo about i i , we know that there exists X2 £ S such that X2 £ B\ 
(otherwise xi by itself would generate a finite eo-net for S). Constructing 
the ball B<i of radius eo about X2, we know that there exists x^ & S such 
that £3 ^ B\ U B2. Continuing in this way, we construct a sequence {xn} 
such that d(xn, xm) > eo whenever n^m. Because {xn} cannot contain a 
Cauchy subsequence, 5 is not precompact. 

Conversely, suppose that S is totally bounded and take any sequence 
{xn} from S. We begin to select a Cauchy subsequence from {xn} by 
taking ei = 1/2 and constructing a finite ei-net for S. One of the balls, say 
B\, must contain infinitely many elements of {xn}- Choose one of these 
elements and call it x^. Then construct a finite e2-net for S with £2 — 1/22. 
One of the balls, say B2, must contain infinitely many of those elements 
of {xn} which belong to B\. Choose one of these elements and call it Xi2. 
Note that d(xi1,Xi2) < (2)(l/2) = 1 since both Xi2 and xix belong to B\. 
Continuing in this way we obtain a subsequence {xik} C {xn} where, by 
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construction, Xik and Xik+1 reside in a ball Bk of radius Ek = l/2fc so that 

1 \ 1 
d(Xik,Xik+1) < 2 

2k ) 2k~1' 

Thus 

a(Xik, Xik+m) < a(Xik, Xik+1) + a{Xik+1, Xik+2) + ••• + a(Xik+m_1, Xik+m) 

1 1 1 1 
— 2 fe_1 2k 2fc+m~2 2fc_2 

for any m > 1, and {xik} is a Cauchy sequence. D 

Definition 3.8.3 Let S be a subset of a metric space. We say that S 
is compact if every sequence taken from S contains a Cauchy subsequence 
that converges to a point of 5. 

Note that a compact subset of a metric space is closed. But a closed set 
is not, in general, compact. (In Kn a closed and bounded set is compact 
according to the present definition.) We now reformulate the Hausdorff 
criterion for compactness: 

Theorem 3.8.2 A subset of a complete metric space is compact if and 
only if it is closed and totally bounded. 

The proof is left as an exercise for the reader. 

Example 3.8.1 Show that the Hilbert cube 

S = {x= (&,&, . •.) G l2: |£„| < I for n = 1,2,...} 

is a compact subset of £2. 

Solution We show that S is closed and totally bounded in the complete 
space l2. Let y = (T?I,??2, • • •) be a limit point of S. There is a sequence 
{x^'}} C 5 such that 

,|y - xW) \\l = £ > * - dj) I2 - 0 as j - oo. 
fc=i 

Hence for each k we have 1?̂  - Ck | —> 0 as j —> oo. By the triangle 
inequality 

1%1^1%-^l + l ^ l ^ k - ^ l + p 
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and passage to the limit as j —» oo gives \rjk\ < \ for each k. This shows 
that y € S1, hence 5 is closed. Next we show that S is totally bounded. Let 
e > 0 be given. We begin to construct a finite e-net by noting that the nth 
component of any element z = ( ( i , ( 2 , . " ) £ S differs from zero by no more 
than 1/n. Since the series J^ 1/n2 is convergent we can choose TV such that 

oo 

E ICn|2<£
2/2-

n=N+l 

Now take the first N components and consider the corresponding bounded 
closed hypercube in RN. For this there certainly exists a finite e2/2-net of 
iV-tuples, and we can select (£ i , . . . , £JV) such that 

ElC«-£n|2<£
2 /2 . 

n = l 

We construct a corresponding element x£ G (? by appending zeros: 

x e = (6> • • • ,&/ ,0 ,0 , . . . ) . 

For this element 

N oo 

| | z - x e | | 2 = ^ | C n - e „ | 2 + E |C n | 2 <£ 2 / 2 + e2/2 = e2 

n = l n=iV+l 

as desired. 

Theorem 3.8.3 Every precompact metric space is separable. 

Proof. Let X be a precompact metric space. For each fc, fc = l , 2 , 3 , . . . , 

let £fc = 1/k and construct a finite e^-net (xki,Xk2, • • • ,^fcw) for X. (Here 
N depends on A;.) The union of these nets is countable and dense in X. • 

Theorem 3.8.4 Every closed and bounded subset of a Banach space is 
compact if and only if the Banach space has finite dimension. 

The proof of Theorem 3.8.4 depends on the following result, known as 
Riesz's lemma. 

Lemma 3.8.1 Let M be a proper closed subspace of a normed space X. 
7/0 < e < 1, then there is an element x£ fi M having unit norm such that 

inf IIy — x£\\ > 1 - e. 
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(Here we use the term "proper" to exclude the case M = X.) 

Proof. Take an element XQ G X that does not belong to M and let 

d = inf ||a;o - 2/||. 
yEM 

We have d > 0; indeed, the assumption d = 0 leads to a contradic
tion because it implies the existence of a sequence {yk} C M such that 
II#o — Vk\\ ~* 0) hence yk —> £ 0 hence xo € M because M is closed. By 
definition of infimum, for any e > 0 there exists ye 6 M such that 

d< \\x0-ye\\ < 1 _ £ / 2 -

The normalized element 

zo -J/e 
a;, = 

Fo — 2/e| 

has the properties specified in the lemma. It clearly has unit norm and 
does not belong to M. Moreover, for any y G M we have 

lko-J/e|| 
\\xp - (ye + \\xp -ye\\y)\\ 

\\xo -Ve\\ 

>d/- d = l - £ 

•e/2 2 

where the intermediate inequality holds since ye + \\XQ —ye\\y belongs to 

M. n 
As an important application of Riesz's lemma, let us show that the unit 

ball 

B = {xGX: \\x\\ < 1} 

is not compact if X is infinite dimensional. (This is the "only i f part 
of Theorem 3.8.4.) Take y± € B. This element generates a proper closed 
subspace E\ oiX given by E\ = {aj/i: a € C}. By Riesz's lemma (with e = 
1/2) there exists j/2 such that j/2 € B, yi g E\, and \\y\ — J/2II > 1/2. The 
elements j/i , J/2 generate a proper closed subspace E-x of X, and by Riesz's 
lemma there exists j / 3 such that j/3 G B, y3 £ E2, and \\yi — 2/31j > 1/2 
for i = 1,2. Since X is infinite dimensional we can continue this process 
indefinitely, producing a sequence {yn} C B any two distinct points of 
which are separated by a distance exceeding 1/2. Since no subsequence of 
{yn} is a Cauchy sequence, B is not compact. 
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Definition 3.8.4 Let M be a set of functions continuous on a compact 
set ficK". We say that M is 

(1) uniformly bounded if there is a constant c such that for every / (x ) € M, 
| / (x) | < c f o r all x 6 ^ . 

(2) equicontinuous if for any e > 0 there exists S > 0, dependent on e, such 
that whenever |x - y| < 5, x, y G Q, then | / (x) - / ( y ) | < e holds for 
every / (x) £ M. 

Uniform boundedness simply means that the set of functions lies in a 
ball of radius c in C(fi) (in Arzela's time the normed space terminology 
was not yet in full use). Since the space C(fi) is infinite dimensional, this 
cannot be the sole condition for compactness. We also note that any finite 
set of continuous functions is equicontinuous by Weierstrass's theorem from 
calculus; given e > 0 we can find the required 5 for each individual function, 
then take the smallest of these values and use it as 5 for the whole set. An 
infinite set of continuous functions need not be equicontinuous. 

The space of continuous functions is one of the main objects of calcu
lus, differential equations, and many other branches of mathematics. It is 
important to have a set of practical criteria under which a subset of this 
space must be precompact. This is provided by Arzela's theorem. 

Theorem 3.8.5 Let Q be a compact set in Rn, and let M be a set of 
functions continuous on Q.. Then M is precompact in C(f2) if and only if 
it is uniformly bounded and equicontinuous. 

Proof. Suppose that M is precompact in C(Q.). By Theorem 3.8.1 there 
is a finite e-net for M with e = 1; i.e., there is a finite set of continuous 
functions {gi(x)}'l=1 such that to any / (x) there corresponds g'i(x) for which 

| | / ( x ) - S i ( x ) | | = m a x | / ( x ) - ^ ( x ) | < 1. 
xGSi 

Since the <?i(x) are continuous there is a constant c\ such that |<?i(x)| < c\ 
for each i. Using the inequality | | /(x)| | < ||</i(x)|| + | | /(x) — </i(x)||, we have 

max | / (x ) | < Ci + 1. 

It follows that M is uniformly bounded with c = Ci + 1. We proceed to 
verify equicontinuity. Let e > 0 be given, and choose a finite e/3-net for 
M, say {^(x)}^!- Since the number of <?i(x) is finite and, by a calculus 
theorem, each of them is equicontinuous on f2, there exists <5 > 0 such that 
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|x — y| < S implies 

Ift(x) -9i(y)\ < e / 3 , i = l,...,m. 

For each / (x ) S M, there exists g r(x) such that 

| / (x) - gr(x)\ < e/3 for all x 6 Q. 

Whenever x, y 6 0 are such that |x — y| < S then, we have 

| / (x) - / ( y ) | < | / (x) - flr(x)| + \gr(x) - gr(y)\ + \gr(y) - / ( y ) | 

< e/3 + e/3 + e/3 = e 

as desired. 
Conversely suppose that M is uniformly bounded and equicontinuous. 

We must show that from any sequence of functions {/^(x)} C M we can 
choose a Cauchy subsequence. Let {x^} be the set of all rational points of 
Q (enumerated somehow); this set is countable and dense in O. Consider 
the sequence {/^(xi)}. Because this numerical sequence is bounded, we 
can choose a Cauchy subsequence {/^(xi )} . We have thus chosen a sub
sequence {/^(x)} C {/fe(x)} that is a Cauchy sequence at x = x i . From 
the bounded numerical sequence {/it1(x2)} we can choose a Cauchy subse
quence {/fe2(

x2)}- The subsequence {/fc2(x)} is thus a Cauchy sequence at 
both x = xi and x = X2. We continue in this way, taking subsequences 
of previously constructed subsequences, so that on the nth step the sub
sequence {/fc„(x„)} is a Cauchy sequence and, since it is a subsequence of 
any previous subsequence, the sequences obtained by evaluating {/fcn(x)} 
at x i , . . . , x n _i are Cauchy sequences as well. 

The diagonal sequence {/„n(x)} is a Cauchy sequence at x = x, for all 
i. We now show that it is a Cauchy sequence in the norm of C(Cl). Let 
e > 0 be given. According to equicontinuity we can find <5 > 0 such that 
|x — y| < S gives for every n 

l / n „ ( x ) - / „ „ ( y ) | < e / 3 . 

Take 5' < S and construct a finite <5'-net for fi with nodes {zi}[=i C {xi}. 
Since r is finite we can find TV such that whenever n, m > N we have 

l /n„(z»)- /m m (z i ) | < e / 3 , i = l,...,r. 
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Choose any x G fl and let Zfc be the point of the £'-net nearest x so that 
|x — Zfc| < 8'. Then n,m> N implies 

l / n „ ( x ) - / m m ( x ) | < | / „ n ( x ) - / n n ( Z f c ) | + | /„„(Zfc) - / m m ( Z f c ) | 

+ \fmm (xk) ~ fmm (x)| < e/3 + e/3 + e/3 = e, 

hence 

m a x | / n n ( x ) - / m „ , ( x ) | = | | / n n ( x ) - / m m ( x ) | | < £ 

for all n,m> N. • 

Remark 3.8.1 In the proof we made use of the diagonal sequence idea. 
Since this is a standard technique in analysis and will be used again in this 
chapter, we take a moment to clarify the ideas involved. 

Suppose we start with a sequence {xn} and want to extract a sub
sequence that satisfies some set of convergence-related criteria pk (k = 
1,2,3,...). Let us agree to write [xnk] for the subsequence we select at 
the kth step of our process (fe = 1,2,3,...), and xnk for the nth element of 
that subsequence (n = 1,2,3,...). 

Our process begins with the selection of successive subsequences, as 
follows: 

1. From {xn} we select {arnl} that satisfies p\. It is clear that the whole 
sequence {x n l } as well as each of its subsequences satisfies p\. 

2. Then from {x n l } we take {xn2} that satisfies y>2- The whole sequence 
as well as each of its subsequences satisfies P2- Being a subsequence of 
{xni}, it and all of its subsequences satisfy pi as well. 

3. The same is done with {xn2}'- choose {xn3} that satisfies P3, so all of 
its subsequences satisfy ps and, simultaneously, p\ and p2-

k. Choose {xnk} that satisfies pk and p\,... ,pk-i-

We now form the sequence 

{xnn}^=1 = xn, x22, x33, . . . . (3.8.1) 

This is the desired diagonal sequence. 
The sequence (3.8.1) is automatically contained in { x n l } . Except pos

sibly for the first term, it is also contained in {xn2}; the first term is a 
non-issue because the behavior of a finite number of terms has no impact 
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on the satisfaction of pi. Except possibly for the first two terms, (3.8.1) 
is also contained in {x n 3 }, and so on. So the diagonal sequence, except 
for finite numbers of terms, is contained in {xnk} for each k. It therefore 
satisfies pk for k = 1,2,3, — 

Example 3.8.2 Let Q, be a compact subset of Rn , and suppose S is a 
collection of functions {/fc(x)} continuous on Q,. Further, suppose that 5 
is bounded in C(Q) and that K(x,y) is a function continuous on Q x fl. 
Show that the set 

A=UK(x,y)fk(y)cMy 

is precompact in C(Q). 

Solution The members of A clearly belong to C(fi). Uniform bounded-
ness of A is shown by the inequality 

max [ K(x,y)fk(y)d£ly <max|/fc(x)|- max \K(x,y)| • mesfi, 
x£f2 (x,y)gf2xQ 

since the set {fk(x)} is itself uniformly bounded so that max x €^ |/fc(x)| < c 
where c is some constant that does not depend on k. Equicontinuity of A 
follows from the inequality 

/ K(x,y)/ f c(y)dfiy - / K(x',y)fk(y)dny 

<c- f \K(x,y)-K(x',y)\dny. 
Jn 

Indeed, for any e > 0 there exists 5 = 6(e) such that 

£ 
\K(x,y)-K(x',y)\< 

cmesQ 

whenever |x — x' | < S (independent of y € fi). Because A is a uniformly 
bounded and equicontinuous subset of C(tt), it is precompact in C(f2) by 
Arzela's theorem. 

People working in application areas often prefer to have crude but conve
nient sufficient conditions for the fulfillment of some properties. In the case 
of C(a, 6), the space of functions continuous on [a, b], a sufficient condition 
is given by 

Theorem 3.8.6 A set of continuously differentiable functions bounded in 
the space C^(a, b) is precompact in the space C(a, b). 
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Proof. The proof follows from the classical Lagrange theorem which for 
any continuously differentiable function f(x) and arbitrary x, y guarantees 
the existence of z £ [x,y] such that f(x) — f(y) = f'(z)(x — y). Equicon-
tinuity of a bounded subset of C^(a, b) is a consequence of this. Uniform 
boundedness of the set is evident. • 

The reader can formulate and prove the similar statement for the more 
general space C^(Cl). Indeed there is an analogue of the mean value the
orem for multivariable functions belonging to C^(Q.) where fi is com
pact. Let x, y be any two points of Q such that the connecting segment 
A = ty + (1 - f)x, t € [0,1], lies in ft. Consider a function / (x) € C (1)(fi). 
For fixed x, y, the function 

F(t)=f(ty+(l-t)x) 

belongs to C^(0,1), hence we can apply the one-dimensional form of La
grange's formula and write 

F(l) - F(0) = F t(t) | t=€(l - 0) for some £ e [0,1]. 

Rewriting this in terms of / we get 

/ ( y ) - / ( x ) = V / ( z ) | B = € y + ( 1 _ € ) x - ( y - x ) , 

which is also called Lagrange's formula. The estimate 

| / ( y ) - / ( x ) | < m a x | V / ( z ) | | y - x ) | 

follows immediately. In the same way, beginning with the Newton-Leibniz 
formula 

F ( 1 ) - F ( 0 ) = / Ft(t)dt 
Jo 

it is easy to prove the integral formula 

/(y) - /(x) = fo v/(z)|z=Cy+(1_?)x • (y - x ) & 

From this we can derive the above estimate as well. 
Note that now we consider the same continuously differentiable func

tions as elements of different spaces, C^{Vi) and C(Q). When we consider 
the correspondence between an element in C^(Q) and the same element 
in C(fi), it is not an identity mapping since the spaces are different and 
the properties of the operator are defined not only by the elements but also 
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by the properties of the spaces. This a typical example of an operator of 
imbedding (we imbed a set of C^(Cl) into C(fi)). Using this term and the 
notion of compact operator given later, we can reformulate the last theorem 
as follows: 

Theorem 3.8.7 Let Q be a compact set in M.n. The imbedding operator 
from C^(Q) into C(Q) is compact. 

3.9 Inner Product Spaces, Hilbert Spaces 

The existence of the dot product in Euclidean space offers many advantages 
with respect to the operations that may be performed in the space. The 
dot product also generates the norm in Euclidean space. In order that there 
might exist a functional defined on each pair of elements of a normed space 
and possessing the properties of the dot product, a linear space X should 
have quite special properties. Let us define what we call an inner product. 
This is a functional (x,y) defined (i.e., always giving a uniquely defined 
finite result) for any pair of elements x,y of the space X, and having the 
following properties: 

(1) (x, x) > 0 for all x G X, with (x, x) = 0 if and only if x = 0. 
(2) (y,x) = (x,y) for all x,y eX. 
(3) (Xx + ny, z) = A (a;, z) + fi(y, z) for all x,y,z G X and any complex 

scalars A, //. 

We have defined this for a complex space. If X is a real space instead, then 
property 2 must be changed to 

2. (y,x) = (x,y) for all x,y e X 

and in property 3 we must use only real scalars A, \x. Note that the inner 
product is linear in the first argument and conjugate linear in the second 
argument: 

(a ixi + a2x2,y) = ai(x1,y) + a2{x2,y), 

(x,aij/i +a2y2) =ai(x,y1)+a2(x,y2)-

Example 3.9.1 Let X be any inner product space under the inner prod
uct (•, •). Show that (x, z) — (y, z) holds for arbitrary z G X if and only if 
x = y. 
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Solution The "if part of the proposition is trivial. To prove the "only i f 
part, we begin by assuming that (x, z) = (y, z) for all z £ X. Rearranging 
this as 

(x,z) - (y,z) = 0, 

we can use property 3 to get (a; — y,z) — 0. Since this holds for all z € X, 
it holds in particular for z = x — y: 

(x-y,x-y)=0. 

By property 1 we conclude that x — y = 0. This, of course, implies that 
x = y. 

Since this functional, the inner product, is defined by copying the main 
properties of the dot product, we preserve the terminology connected with 
the dot product in Euclidean space. In particular there is the notion of 
orthogonality. We say that two elements x, y are mutually orthogonal if 
(a;, y) = 0. We say that x orthogonal to Y, a subspace of X, if x is orthog
onal to each element of Y. 

Definition 3.9.1 A linear space with an inner product possessing the 
properties listed above is called an inner product space or a pre-Hilbert 
space. 

First we demonstrate 

Theorem 3.9.1 A pre-Hilbert space is a normed space. 

Proof. By similarity to Euclidean space let us introduce a functional 
denoted as a norm 

\\x\\ = (x,x)W. 

This functional is defined for any element of X. Let us demonstrate that 
it satisfies all the axioms of the norm. Norm axiom 1 is fulfilled by virtue 
of inner product axiom 1. We verify norm axiom 2 by noting that 

||Ax|| = [(Ax, Ax)]1/2 = [A(x,Ax)]1/2 = [A(A^T^)]1/2 

= [{&)&x))1'2 = [\\\\x,x)]1<2 

= \\\(x,x)1'2. 

Verification of norm axiom 3 requires us to use the Schwarz inequality 

|(x,t/)|<||x|||M|, (3.9.1) 
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in which for nonzero x and y the equality holds if and only if there is a 
number A such that x = Xy. Using it we have 

Ik + yll2 = (x + y,x + y) 
= (x, x) + (x, y) + (y, x) + (y, y) 

<lkll2 + INiyi + INIIMI + IMI2 

= (INI + IMI)2 

as required. • 

It remains to establish (3.9.1). We start by noting that if x = 0 or 
y = 0 then (3.9.1) is evidently valid. So let y ^ 0. If A is any scalar, then 
(x + Xy, x + Xy) > 0 and expansion gives 

(x + Xy,x + Xy) = (x, x) + X(y, x) + ~X(x, y) + XJ{y, y). 

The particular choice A = —(x,y)/(y,y) reduces this to 

« M2 J(x,y)\2 \{x,y)\2\\y\\2
 n 

\\yf h\\4 ~ 

and (3.9.1) follows directly. 

Example 3.9.2 Show that 

||a; + y | |2 + | | a ; - y | | 2 = 2| |^ | |2 + 2||y| |2 . 

This is known as the parallelogram equality. 

Solution We write 

||a: + y||2 + \\x - y\\2 = (x + y,x + y) + (x - y,x - y) 

= (x,x + y) + (y, x + y) + (x, x - y) - (y, x - y) 

= {x + y,x) + (x + y, y) + (x- y, x) - (x - y, y) 

= (x, x) + (y, x) + (x, y) + (y, y) 

+ (x, x) - (y, x) - (x, y) + (y, y) 

= 2{x,x) + 2(y,y) 

= 2\\x\\2 + 2\\y\\
2 

and have the desired result. 
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Example 3.9.3 Show that if x and y are orthogonal vectors in an inner 
product space, then 

||a; + y||2 = W 2 + |M|2. 

This is known as the Pythagorean theorem. 

Solution We write 

l|z + 2/||2 = (x + V, x + y) 

= (x,x + y) + (y,x + y) 

= (x, x) + (x, y) + (y, x) + (y, y) 

and simply note that (x, y) = (y, x) = 0 for orthogonal vectors. 

Example 3.9.4 (a) Assume the norm is induced by the inner product, 
and suppose that xn —• x and y„ —• y. Show that (xn,yn) —> (x,y). That 
is, any inner product is a continuous functional in each of its arguments, 
(b) Let M be a dense subset of an inner product space X, and let v € X. 
Show that if (v, m) = 0 for all m G M, then v = 0. 

Solution (a) Let us write 

\{xn,yn) - {x,y)\ = \(xn,yn) - {xn,y) + (xn,y) - (x,y)\ 

= \{xn,yn-y) + (xn -x,y)\ 

< \(xn,yn -y)\ + \(xn -x,y)\ 

< ll^nll \\Vn ~y\\ + \\Xn ~ x\\ \\y\\ . 

Since {xn} is convergent it is bounded. The other n-dependent quantities 
can be made as small as desired by choosing n sufficiently large, (b) Use 
continuity of the inner product. Let v £ X be fixed. Since M is dense in 
X there is a sequence of elements rrik £ M such that m^ —+ v as k —> oo. 
Since 0 = (v,m,k) for all k, we can take the limit as k —* oo on both sides 
and use continuity of the inner product to obtain 

0 = lim (v,rrik) = ( v, lim m^ ) = (v,v). 

k—*oo V fc—>oo J 

Hence v = 0. 

Definition 3.9.2 A complete pre-Hilbert space is called a Hilbert space. 
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Let us consider some Hilbert spaces. The space I2 is the space of infinite 
sequences having inner product 

oo 

( x , y ) = ^XiTi 
i=l 

in the complex case and 

oo 

(x, y) = ̂ 2 Xi^ 
i = i 

in the real case. The corresponding generated (induced) norm is 

/ o o N l / 2 

\\A\ = {x,xyi* = \Ti\xiA . 

As we noted earlier, the theory of the space (2 was the predecessor of 
functional analysis. It plays an extremely important role in the functional 
analysis of Hilbert spaces because, as we shall see later, for any separable 
Hilbert space we can introduce a one-to-one isometric correspondence with 
£2 that preserves algebraic operations in the spaces. This is done by the 
use of Fourier expansion of elements of the Hilbert space. 

In the space L2(f2) an inner product can be introduced as 

(/(x),0(x)) = Qr/(x)£wdn) 

in the complex case and 

1/2 

(/(x))5(x)) = Qf/(x)fl(x)dn 

in the real case. We have introduced the inner product in such a way that 
the induced norm coincides with the norm that we introduced earlier on 
L2(SY). This brings us to the question of how to introduce an inner product 
in any Sobolev space Wl'2(£l): we use 

(/(x),5(x)) = / £ Daf(x)D^(x)d{l, 
jQ \a\<l 

Of course, the induced norm is the same as the norm we introduced earlier 
in Wl>2(n). 
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An important class of Hilbert spaces forms the subject of the next sec
tion. 

3.10 Some Energy Spaces in Mechanics 

To distinguish different states of mechanical objects it is possible to use 
various norms. To characterize the amplitudes of forces, for example, it 
is appropriate to use norms of the type of the norm of M(fi), defined on 
the set of bounded functions. If the field is continuous then it is more 
appropriate to use the tools of the space C(O). The same can be said 
for fields of displacements, strains, and stresses. However, there is one 
important characteristic of a body: its energy due to deformation. It is 
sensible to try to use this quantity when we characterize the state of a 
body. We would like to consider this possibility in more detail. The most 
convenient fact is that the energy spaces we shall introduce are subspaces 
of Sobolev spaces, and thus we can use Sobolev's imbedding theorem to 
characterize the parameters of corresponding boundary value problems. Of 
course, it is possible to use Sobolev spaces directly for this, but the use of 
energy spaces has many advantages. First of all, in this way we take into 
account the nature of the problem more closely, so sometimes we can make 
better use of what is often called mechanical intuition. Moreover, the energy 
norms and corresponding inner products permit the proper and direct use 
of such fundamental properties as mutual orthogonality of eigensolutions 
of corresponding problems; these properties form the basis for solutions by 
the Fourier technique. 

A stretched rod 

We begin with a very simple problem that could be solved by direct inte
gration. It is the problem of equilibrium of a rod when it is stretched by a 
distributed load (Figure 3.1). The double inner energy of a rod of length I 
is 

pi 
2£(u) = / ES(x)u'2(x)dx 

Jo 

where the constant E is Young's modulus, S(x) is the area of the cross-
section with 0 < So < S(x) < Si, and u{x) is the displacement of the 
cross-section of the rod at point x in the longitudinal direction. Suppose 
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m 

0 I 

Fig. 3.1 Stretched rod under distributed longitudinal load f(x) and a point force F. 

the end at x — 0 is fixed: 

u(0) = 0. (3.10.1) 

This energy generates a functional in two variables that can be considered 
as an inner product: 

u,v)Rc= / ES(x)u'{x)v'(x)dx. (3.10.2) 
Jo 

C 

(Here the subscripts "Re" are used to remind us that we are dealing with 
a clamped rod: a rod that is fixed in space. Below we will use subscripts 
"Rf" to denote a free rod.) The inner product has a clear mechanical 
meaning: it is the work of internal forces corresponding to the state of the 
rod u{x) on the admissible displacement field v(x). (We recall that the 
terms "admissible" and "virtual" are interchangeable.) Considering it on 
the set CRC of all continuously differentiable functions on [0, /] that satisfy 
(3.10.1), we can demonstrate that it really is an inner product (the reader 
should verify this). Let us demonstrate that on CRC the norm 

\ 1 / 2 

WW RC = K i,«)J42 = ( J ES(x)u'2(x)dx 

induced by the energy inner product is equivalent to the norm of the Sobolev 
space W1,2{Q,l), which is 

/ fi \ 1 / 2 

H l l , 2 = ( / (u2(x)+u'2(x))dx\ . 

We must show that there are two positive constants m,M such that for 
any u(x) € CRC we have 

m\\u\\Rc<\\u\\ia<M\\u\\ Re • 
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The left-hand inequality is a consequence of 

||u(:r)||^c = / ES(x)u'2{x)dx 
Jo 

<ESx J (u2(x)+u'2(xj) dx 

= ES1\\u(x)\\l2. 

To prove the right-hand inequality we begin with the identity 

u(x) = / u'(t) dt. 
Jo 

Squaring and then integrating over [0,1] we get 

jf u2(x)dx = jT Q T u'(t)dtj dx. 

Applying the Holder inequality we have 

fu2(x)dx = ( l-u'{t)dt\ dx 

< I ( J \2dt I u'2{t)dt\ dx 

A 
<l2 u'2(x)dx, (3.10.3) 

Jo 

from which the needed fact follows immediately. 
If we now apply the procedure of completion in the set CRC with respect 

to the norms ||-||flc and ||-||j 2, we get spaces that contain the same elements 
and have equivalent norms, so they are considered as the same space. Let 
us denote this energy space by £RC and apply the Sobolev imbedding the
orem. This space is a subspace of the Sobolev space W1,2(0,1). We said 
that this space is continuously imbedded into H /1 '1(0,/), and for the latter 
we established that to each of its elements there corresponds a continuous 
function; hence to each element of £RC there corresponds a continuous func
tion. It is easy to see that all these continuous functions satisfy (3.10.1). 
We shall identify these continuous functions with corresponding elements of 
£RC, and in this sense say that the elements of £RC are continuous functions. 
The same will be done in other cases. 
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A free rod 

In the same manner we can consider the energy space for a free rod: i.e., a 
rod with both ends free of geometrical restrictions. In this case longitudinal 
motions of the rod are unrestricted by boundary conditions, so when we try 
to use the same inner product (3.10.2) induced by inner energy of the rod, 
we will meet a situation where there are nontrivial displacements for which 
the corresponding energy norm is zero. It is easy to see that u{x) = c is 
such a state of the rod. First we will show that there are no other states 
with zero inner energy, for which we will derive an inequality that replaces 
(3.10.3) for the problem of a free rod. We begin with the identity 

u(x) = u(y) + / u'(t) dt. 
Jy 

First we integrate this with respect to y over [0,1] to get 

pi pi PX 

lu(x) = / u(y)dy+ / / u'(t)dtdy, 
JO JO Jy 

then we take the absolute value of both sides of the identity and estimate 
the right-hand side as in § 3.6: 

l\u(x)\ 
pi pi px pi pi 

I u(y)dy+ / / u\t)dtdy < / u(y)dy +1 / \u'(t)\dt. 
Jo Jo Jy Jo Jo 

(3.10.4) 
Let us consider the subset of functions continuously differentiable on [0,1], 
denoted by CRJ, for which 

[ u(y)dy = 0. (3.10.5) 
Jo 

Note that subtracting a proper constant c from a function, which corre
sponds to a free motion of the rod through the distance c, we get the 
displacement field in the rod with property (3.10.5). From (3.10.4) we have 
three consequences: 

/ \u(x)\dx< / u(x)dx +1 / \u'(x)\dx, (3.10.6) 
Jo Jo Jo 

I max \u(x)\ < 
xe[o,i] 

J u(x)dx +1 I |u'(a;)|da;, (3.10.7) 
Jo Jo 
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and 

I f \u(x)\2dx< 2 I J u{t)dt +l3 J \u'2(y)\dy\ . (3.10.8) 

(cf., Exercise 3.53). From (3.10.6) it follows that the right-hand side can 
serve as an equivalent norm in the space W^1,1(0,Z). Result (3.10.7) states 
that on the subspace of H/1,1(0,1) that is the completion of the set CR/ 
with respect to the norm of W /1,1(0,/), we get the continuous imbedding 
of its elements into C(0,1) and, moreover, the corresponding continuous 
functions satisfy (3.10.5). Finally, from (3.10.8) it follows that taking the 
completion of CRJ with respect to the energy norm we get a subspace of 
W1,2{Q,l) whose norm is equivalent to the energy norm | |- | |D*. This was 
one way in which we could use the energy norm for a free rod to circumvent 
the difficulty with free motions. 

There is another simple way of doing this. We can introduce a factor 
space of continuously differentiable functions with respect to all constant 
functions. This means we declare that the union of all the constant func
tions is the zero element of the new space. Between the elements of this 
factor set and the set CR/ there is a one-to-one correspondence preserving 
the energy distances between corresponding elements. So completion in 
both cases gives the same result from the point of view of isometry, and 
thus both of the approaches to the introduction of an energy space for a 
free rod are equivalent. 

A bent beam 

For a flexible elastic beam (Figure 3.2), equilibrium is governed by the 
equation 

(EIy"(x))" = f(x) 

on [0,1], where E, I are given characteristics of the beam, y = y(x) is the 
transverse displacement, and / = f(x) is the transverse load. If E and I 
are piecewise continuous functions of x, then it is natural to assume that 

0 < c0 < EI < a, (3.10.9) 

where CQ and c\ are constants. Let us first consider a cantilever beam: 

y(0) = 0 = i/'(0). (3.10.10) 
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!(*) 

I w(x) 

Fig. 3.2 Beam under load f(x) and a point force F acting at the end. 

So it is hard-clamped on the left end, and its right end is free from restric
tions of geometrical nature. We use dimensionless variables. The elastic 
energy of the beam is 

2 Jo EB = \ I EIy"\x)dx. 

On the subset CB of those C^(0,l) functions satisfying the condition 
(3.10.10), the energy induces a metric 

d(y,z) •w 
1/2 

EI(y"{x)-z"{x))2 dx (3.10.11) 

(we leave it to the reader to verify that all the metric axioms are valid for 
this). To this metric there corresponds the energy norm 

\\y\\B -W 
1/2 

EIy"2{x)dx 

and an inner product 

(y,z)B = f EIy"{x)z"{x)dx. (3.10.12) 
Jo 

This space is not complete. Applying the completion theorem to the space 
of functions from C^(0,l) satisfying (3.10.10) with respect to the metric 
(3.10.11), we get a complete metric space denoted by SBC that is a Hilbert 
space with inner product (3.10.12). Because of (3.10.9), the norm on £BC 
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is equivalent to the auxiliary norm 

\\y\\2=(£y"2(x)dx\ , (3.10.13) 

and thus we will study the properties of elements of £BC using the norm 
(3.10.13). First let us mention that for a function y of the base set CB 
from which £BC arises, its derivative y' belongs to the base set for the 
energy space for a stretched rod with clamped edge, and so we can write 
out inequality (3.10.3) for it, 

/ y'2(x)dx<l2 f y"2(x)dx, 
Jo Jo 

in addition to the inequality for y itself, 

f y2(x)dx<l2 f y'2(x)dx, 
Jo Jo 

and thus for any smooth representer of the space £BC we have 

pi pi rl 1*1 

/ y2(x)dx+ / y'2(x)dx<c y"2(x)dx<c2 / EIy"2(x)dx. 
Jo Jo Jo Jo 

All together this means that on £BC the energy norm is equivalent to the 
norm of the Sobolev space W2'2(0,1) whose norm is 

\\y\\l2 = f (y"2(x) + y'2(x) + y2(x)) dx, 

and so on EBC we can use Sobolev's imbedding theorem for W2'2(0,l). In 
this case each element of £BC is identified with a continuously differentiable 
function; in other words, the space £BC is imbedded continuously into the 
space CW{0,1). 

A bent beam (free ends) 

Now we do not impose any geometric restraints on the left and right ends 
of the beam. We would like to try the same functional ||y||B for the role of 
a norm. It is easily seen that we are in the same position as for the norm 
of a free stretched rod, namely, all the axioms of the norm hold except one: 
when \\y\\B = 0, it follows that there is a non-zero solution to this equation 
y = a + bx. This function has a clear mechanical meaning: it is the motion 
of the beam in space as a rigid body. We will use this term "rigid motion" 



Functional Analysis 227 

very frequently in what follows. In a way how we used inequality (3.10.3), 
we can subsequently obtain from inequality (3.10.8) that for any function 
fromC(2)(0,Z) there holds 

I f y'2(x)dx < 2 j f y'(x)dx) + 2/3 f y"2(x)dx 

and 

and thus 

I f y2{x)dx < 2 ( f y(x)dx\ +213 f y'2(x)dx, 

J (y2(x)+y'2(x)) dx<c3 Uy(x)dx\ 

+ (J y'(x)dx) +J y"2(x)dx 

Inequality (3.10.14) means that the expression 

(3.10.14) 

2 / , x 2 

| |y | | 2= | ( / y(x)dx] + | / y'(x)dx) + / EIy"2{x)dx 
.Jo 

1/2 

12 
• • • . . . ' / o 

(3.10.15) 
is a norm that is equivalent to the norm of W2'2(0,l). To introduce the 
energy space for a free beam we can use this fact in two ways in the same 
manner as was done for a stretched rod. First we can choose for the base 
of the energy space only those smooth functions for which 

/ y(x)dx = 0= I y'(x)dx. (3.10.16) 
Jo Jo 

Denote this set C s / . 
To get elements of CB/ we can use the fact that to any smooth func

tion y = y(x) there corresponds the only function satisfying (3.10.16) 
that is obtained by a proper choice of constants a and b in the expres
sion y(x) — a — bx. In this way we do not change the distribution of stresses 
in the beam, but only fix the beam somehow in space. Thus, because of 
(3.10.15), on the set of functions from C(2)(0,Z) satisfying (3.10.16) the 

( i 2 N 1 / 2 

norm ||y||B = (J 0 Ely" (x)dx\ is equivalent to the norm of W2'2(0,l), 
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and thus after completion we can use the Sobolev imbedding theorem for 
W2'2(0,l) and hence know that any representative sequence of Ssf is such 
that it has a continuous function as a limit and, moreover, the sequence of 
first derivatives also converges to a continuous function. Moreover, for the 
limit functions we get that (3.10.16) holds as well. 

The second way we can use now is to employ a factor space, declaring 
that the zero element of the energy space is the set of all linear polynomials 
that are infinitesimal rigid motions of the beam, a + bx. In this case among 
all the representers of an element there is only one that satisfies (3.10.16), 
and thus we get an isometric one-to-one correspondence between the ele
ments of the two versions of the energy space and can carry interpretations 
of results for one version over to the other. 

Remark 3.10.1 In order to introduce the energy space for an elastic 
beam subjected to normal and longitudinal loads, we can consider pairs of 
displacements (u, w) and combine the energy functional, norms, and inner 
products for a rod and a beam. 

f(x,y) 

Fig. 3.3 Membrane clamped along the edge. 

A membrane (clamped edge case) 

The equilibrium of a clamped membrane (Figure 3.3) occupying a domain 
fl C R2 is described by the equations 

a Au -/, 0, 

which together make up the Dirichlet problem for Laplace's equation. Here 
u = u(x, y) is the transverse displacement of the membrane and / = f(x, y) 
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is the external load. The parameter a relates to the tension in the mem
brane. The potential energy of the membrane is 

£M(u H/„ du\2 

d-x)
+ 

du 
dy 

dxdy. 

By a proper choice of dimensionless variables in what follows, we will put 
a = 1. A metric corresponding to this energy on the set of functions u(x, y) 
from C^(Q) that satisfy the boundary condition 

u{x,y) 
an 

(3.10.17) 

is 

Jt s Iff \(du dvY fdu dv\ 
1/2 

dxdy (3.10.18) 

The resulting metric space is appropriate as a starting point for investigat
ing the corresponding boundary value problem. 

The subset CMC of C^^(fi) consisting of all functions satisfying (3.10.17) 
with the metric (3.10.18) is an incomplete metric space. If we introduce an 
inner product 

(u ,v)M = U du dv du dv^. 

dx dx dy dy, 

consistent with (3.10.18) we get an inner product space. Its completion in 
the metric (3.10.18) is the energy space for the clamped membrane, denoted 
£MC- This is a real Hilbert space. 

What can we say about the elements of EM<P- It is obvious that the 
sequences of first derivatives {dun/dx}, {dun/dy}, of a representative se
quence {un} are Cauchy sequences in the norm on L2(fl): i.e., if 

d(um,un) II dum 

dx 
dun 

dx + 
dUn dun 

dy dy 

1/2 

dxdy 

0 as m, n —» oo, 
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then 

/ / 

dum _ dun 

dx dx 

1/2 

dxdy 
dum dun 

dx dx L2(n) 

0 as m, n —+ oo, 

and similarly for {dun/dy}. It takes more work to say something about 
{un} itself; we need the Friedrichs inequality. 

The Friedrichs inequality states that if a continuously differentiable 
function u = u(x,y) has compact support in U, then there is a constant 
C > 0, depending on D, only, such that 

/ \u\2dQ.<C f \Vu\2dQ. 
Jn JQ 

To prove this it is convenient to first suppose f2 is the square \x\ < a, 
\y\ < a. Since 

di u(x,y) = u ( - a ,y ) + / 
J — a 

and u{—a, y) = 0, we have 

J£1 J— a J— a J— a dt, 
dt; dxdy. 

Then 

W-££l£'-^« dxdy 

9u(t, y) 

J—a J—a J—a J — a 

/

a pa pa pa 

/ / l2diI -a J—a J—a J—a 

/

a pa pa pa 

l 2 d£ / dx / 
-a J—a J—a J— a 

= W ° f du^y)2 

J — a J — a 

d£ dx dy 

d£ dx dy 

du(£,y) 
d£dy 

d£dy, 
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hence 

p pa pa 

I \u\2 dCl <Aa2 I 
i/fi J —a J — a 

du(x,y) 

dx 
dx dy = 4a' / 

Jn 

du 
dx 

dCl. 

By the same reasoning, an analogous inequality holds with du/dy on the 
right-hand side. Adding these two inequalities we obtain 

/ \u\2dn<c f I du 

dx + 
du 

dy 
dn 

where C = 2a2. If Q is not square, we can enclose it in a square fi and 
extend the function u onto the set Cl by setting u = 0 on Q - D, to obtain 
a new function u; in this case 

/ \u\2 dCl<C I[( 
Jn Jn \ 

du 
dx 

du 

dy 
dn 

follows. (Note that the extension u may have a discontinuous derivative on 
dft; however, the presence of such a discontinuity does not invalidate any of 
the steps above when d£l is sufficiently smooth.) The constant C depends 
only on a, hence only on CI (which dictates the choice of a). 

Above we observed that if {un} is a representative of an element of £MC> 

then {dun/dx} and {dun/dy} are Cauchy sequences in the norm of L2(fl). 
The Friedrichs inequality applied t o u = un(x,y) shows that {un} is also 
a Cauchy sequence in the norm of L2(fl). Hence to each U(x,y) G £MC 
having a representative sequence {un}, there correspond elements in L2(Cl) 
having {un}, {dun/dx} and {dun/dy} as representatives. We denote these 
elements of L2(Q) by U(x,y), dU(x,y)/dx, and dU(x,y)/dy, respectively. 
The elements dU/dx and dU/dy are assigned interpretations as general
ized derivatives of the element U later on. However, we need a result for 
the elements of the completed energy space. Passage to the limit in the 
Friedrichs inequality gives 

ffu2dxdy<C ff 
dx J \dy J 

dxdy (3.10.19) 

for any U S £MC and a constant C independent of U. 
Inequality (3.10.19) also means that in £MC the energy norm is equiv

alent to the norm of W1'2(Q), and thus for the space £MC there holds an 
imbedding result in the form of Theorem 3.7.3. 
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A free membrane 

When there are no geometrical restraints on the motion of a membrane, 
we call it free. As in the case of a free bent beam or a stretched rod, a 
free membrane has displacements that can be considered as displacements 
of a rigid body. They are different from the motions of a real rigid body 
in space because the model of the membrane under consideration reflects 
only some features of the real object that we consider as a membrane. For 
characterizing of the state of a free membrane we are choosing the energy 
functional and so the metric (3.10.18) or, the same, the norm 

M»-(/n((i),+(£)>f (3ia20) 

again. It is not a norm on the space of all functions of C^(Sl), where fi 
is compact, since the equation ||u||M = 0 has a solution u = c = constant, 
so we cannot distinguish two states of the membrane whose difference in 
position is c. This constant displacement is the only type of rigid motion 
of a membrane for the model under consideration. The way in which we 
will circumvent the existence of rigid motions looks similar to the one used 
above for free rods and beams. It is based on Poincare's inequality. This 
extends inequality (3.10.8) to a 2-D domain (in fact it is extended for any 
compact n-dimensional domain with piecewise smooth boundary): 

//-K(/HVn((SHi)>) 
with a constant C that does not depend on u. We note that the method of 
its proof for a rectangle domain is similar to one for (3.10.8). The proof is 
lengthy and for a general compact domain with piecewise smooth boundary 
it is even more lengthy, so we leave this inequality without proof.4 From 
the Poincare inequality it follows that on functions from C^(Cl) satisfying 
the condition 

/ u{x, y) dQ = 0 (3.10.21) 

the energy norm ||ti||M is equivalent to the norm of W1'2^). Thus defining 
the energy space £M/ as the completion of functions from C^ ($1) satisfying 
(3.10.21) with respect to the norm (3.10.20) we get a subspace of Wlt2(Q.) 

4 The interested reader can refer to Courant and Hilbert [Courant and Hilbert (1989)]. 
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and hence we can use the Sobolev imbedding theorem of the elements of 
this energy space. We can use another way of arrangement of the energy 
space similarly to another way for free rods and beams. In this we collect 
all the constants into the one element and declare it to be a zero of the 
energy space. The energy space in this case is a factor space of T¥1,2(f2) 
with respect to the set of all the constant functions on Q. Again, there 
is one-to-one isometry between elements of the two versions of the energy 
space, and so we can use any of them in what follows. 

An elastic body 

The internal energy of an elastic body occupying a 3-D bounded connected 
volume V is given by 

3 

ijkl=l 

where cJjfe' are the components of the tensor of elastic moduli and e,j are the 
components of the tensor of small strains. Prom now on we shall omit the 
summation symbol when we meet a repeated index in an expression; this 
is called Einstein's rules of repeated indices. The components of the strain 
tensor relate to the components of the displacement vector u = (m, 1x2,^3) 
given in Cartesian coordinates according to 

&ij ~ €.ij\\l) = — yUij -f- ^j,i) ) 

where the indices after a comma mean differentiation with respect to the 
corresponding coordinates: 

_ duj 
Ui'j~ dxj-

We suppose that the elastic moduli have the usual properties of symmetry 
established in the theory of elasticity, and in addition possess the property 
providing positiveness of the functional of inner energy: 

C &kl&ij _ CO^mn^mn 

for any symmetric tensor with components emn. Here Co is a positive con
stant. 

By symmetry of the components of the tensor of elastic moduli, we 
can introduce a bilinear functional that has properties of symmetry and so 

2Jv 
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pretends to be an inner product: 

( u , v ) B = / c«fcZefc,(u)ey(v)dV. 
Jv 

Linearity of this functional in u and v is seen, as well as the property of 
symmetry 

( u , v ) B = (v,u)E. 

It remains to verify that the first axiom of the inner product holds. By the 
properties of the elastic moduli we get 

( u , u ) B = / cy*'e fcJ(u)ey(u)dV > 0. 
Jv 

If (u, U)E = Jv cIjfe'efci(u)eij(u) dV = 0 and the components of the vector 
of displacements are continuously differentiable, we have ejj(u) = 0 for 
all i, j . From the results of the theory of elasticity it follows that this u 
is a vector of infinitesimal motion of the body as a rigid whole that is 
u = a + b x r where a and b are constant vectors. If some part of the 
boundary of the body is fixed, then this provides that u = 0. The needed 
demonstration is complete. 

We consider the case in which the whole boundary of the body is 
clamped: 

u | 9 n = 0. (3.10.22) 

As a base space we take the set CEC of all vector functions satisfying 
(3.10.22) whose components belong to C^2\V). Let us call the comple-

-I try 

tion of CEC with respect to the induced norm ||u| |B = (u, u ) B the energy 
space of an elastic body with clamped boundary, and denote it as SEC- We 
need to study the properties of this Hilbert space. 
Theorem 3.10.1 The space SEC is a subspace of the space of 3-D vector 
functions, each Cartesian component of which belongs to W1'2^) (the latter 
space we shall denote by (W1,2(Q))3). 

The proof of the theorem is based on an inequality called the Korn 
inequality. In this case it can be written as 

/ (|u(x)|2 + |Vu(x)|2) dV < m f e i j-(u(x))ey(u(x))dV. (3.10.23) 
Jv Jv 

We will prove (3.10.23) for the 2-D case in which the functions possess 
all second continuous derivatives on a compact domain denoted by S and 
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take zero value on the boundary dS of 5 . The spatial variables are x, y. The 
proof is shorter than that for the 3-D case, but contains all the necessary 
ideas. We rewrite (3.10.23) for the 2-D case in a modified form: 

/ / 
(u2 + v2 + ul + u2

y + v\ + vl) dx dy 

<m J (v?x + -{uy + vx)
2 +v2

y J dxdy. (3.10.24) 

Here u, v are the components of vector function u that are equal to zero on 
the boundary dS: 

u\dS = 0, v\dS = 0, (3.10.25) 

and subscripts x, y mean partial derivatives with respect to the correspond
ing variables. Note the difference between the terms with derivatives of the 
norm of (W1'2(S)) and the right-hand side of (3.10.24): the latter does 
not contain the squared derivatives uy and vx but their sum. 

Let us begin to demonstrate the Korn inequality (3.10.25). Because of 
the Priedrichs inequality, it is sufficient to demonstrate that there exists a 
constant m\ > 0 such that 

/ (u2
x + -(uy + vx)

2 + vlj dxdy>rm (u2
x + u2

y + v2
x +v2

y) dxdy. 

(3.10.26) 
Let us transform the intermediate term in the left-hand side of (3.10.26): 

/ (uy + vx)
2 dxdy = / (v,y + 2uyvx + vl) dx dy 

(uy + 2uxvy + vl) dx dy, L IS 

where we integrated by parts with regard for (3.10.22), so we have 

/ . ( 
ul + 2 K + vxf + v2

yj dxdy 

ul + 2Ul + 2 ^ + vv + UxVy) dxdy 

- ! s \ x + ^ + l y 2 x + v 2 y ~ l (u*+v^jdxdy 

>\J {ul+u2
y + v2

x+v2
y) dxdy. 
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This completes the proof of the Korn inequality. 
We recommend that the reader finish the proof of the theorem for a 3-D 

body having the above 2-D example. We will not prove Korn's inequality 
for a body with free boundary (i.e., when there are no boundary conditions 
for vector functions); the proof is technically much more complex, so we 
refer the reader to specialized books [Mikhlin (1965); Fichera (1972)]. We 
note that the form of this inequality is the same if we impose the two 
conditions 

/ u(x) dV = 0, / r x u(x) dV = 0, 
Jv Jv 

on each element of the space. These are four scalar conditions in the 2-D 
case and six conditions in the 3-D case, which coincides with the number 
of degrees of freedom of a rigid body. 

F(x,y) 

B 

A 
A 

Fig. 3.4 A portion of a plate under a distributed load F(x,y). The plate is clamped 
along AB. 

A plate 

Now we begin to consider the energy approach in the theory of a linear 
plate (Figure 3.4) whose equilibrium was described by the equation 

DA2w = F 

where w = w(x,y) is the transverse displacement of points of the middle 
surface of the plate, D the rigidity of the plate, JJL is the Poisson ratio, 
0 < /x < 1/2, and F = F{x,y) is a transverse load. The elastic energy of 
the plate referred to a compact domain ft in M.2 is 

(Wxx (Wxx + fiWyy) + 2 ( 1 - H)wly + Wyy (Wyy + fJ,Wxx)) ffi 
2 Jc 
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where subscripts x and y denote partial derivatives d/dx and d/dy, respec
tively. Using dimensionless variables, for the role of a norm we will try the 
functional 

-u< WXX {WXX + IJ-Wyy) + 2 ( 1 - fJ,)wly 

1/2 

(3.10.27) 

to which there corresponds the inner product 

(U,V)P = / (UXX (VXX + fiVyy) + 2(1 - fJ,)UXyVXy + Uyy (Vyy + /J,VXX)) 
Jn 

dft. 

Elementary calculations demonstrate that over functions of C<2) (ft) the 
equation \\w\\p = 0 has a solution w = a + bx + cy with arbitrary constants 
a, b, c, and no other solution. Considering the case of hard clamping of the 
edge of the plate, that is 

ii ^ a w 

w\\dQ = 0 = — 
an 

(3.10.28) 
dQ 

we have \\w\\p to be a norm on the set Cp of functions of C^2'(ft) that 
satisfy (3.10.28). We will show that the completion of Cp with respect 
to the energy norm (3.10.27) produces a subspace of W2'2(Q) (let us note 
that for this it is sufficient for the plate to be fixed only at three points 
that are not on the same straight line: this gives us an energy space being 
a subspace of W2,2(Sl)). 

Let us begin with a simple remark that on Cp the energy norm is 
equivalent to the norm 

^ K I + 2< + < )«) 
1/2 

and so in the discussion we can use this norm. Next, we see that for 
functions w 6 Cp we have wx and wy continuously differentiate on ft, and 
it follows from (3.10.28) that on the boundary wx = 0 = wy. Thus we can 
apply the Friedrichs inequality, getting 

[ w2
x<m<c [ (w2

xx + w2
xy)(m 
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and 

[ w2
y<m<c [ (wlx + w2

yy)<m. 
Jn Jn 

Combining this with the Priedrichs inequality for w we obtain 

/ (w2 + w2
x + Wy) <m<Cl I (W

2
XX + 2w2

xy + w2
yy) <m 

Jn Jn 

< C2 / (WXX (WXX + fiWyy) + 2 ( 1 - fj)wly + Wyy (iVyy + flWXX)) dQ. 

Jn 

Together with a trivial inequality 

/ {WXX {WXX + flWyy) + 2 ( 1 - p)W2
xy + Wyy (iVyy + fJ.U)xx)) (Kl 

Jn 

<c3 f (w2 + w\ + w2
y + w2

xx + 2w2
xy + w2

yy) dCl 
Jn 

this proves that on Cp the energy norm is equivalent to the norm of 
W2'2(tt), and thus the energy space £pc that is the completion of the set 
Cp with respect to the energy norm (3.10.27) is a subspace of W2'2(£l) and 
we can use in this space the Sobolev imbedding theorem for elements of 
W2'2(Q). 

Quite similarly we can consider the case of a plate with the edge free 
from geometrical restraints. In this case we should circumvent a difficulty 
of the presence of motions of the plate as a rigid body, which are w = 
a + bx + cy. For this we use the Poincare inequality for wx and wy, 

J^w
2
xdn<cAnWxdn\ +J(w2

xx + w2
xy)dn\ 

and 

J^w2
ydn<cA (^wydn^j + J (w2

yx + w2
vy) dn 
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/ 
JQ 

Together with the Poincare inequality for w this gives 

(w2 + w2
x + w2

y) dfi 

<c5<( wdQ.) + ( wxdQ.) +( WydQj 

+ J (w2
xx + 2w2

xy + w2
yy) d0.\ 

<c6<( wd(l) + ( wxdQ.) + ( Wydil) 

+ / {WXX (WXX + (IWyy) + 2(1 - ^)W2
xy + Wyy (iVyy + fJ,WXX)) rffi \ . 

For any function from C^(Cl), on proper change by an addendum a+bx+cy 
we can achieve the equalities 

wdCl = 0, wxdSl = 0, wydQ=0, (3.10.29) 
JQ Jn Jo. 

and for such functions we get the inequality 

/ (W2 +Wl+ WD di} 
JQ 

< C6 (lVXX (WXX + flWyy) + 2 (1 - H)Wxy + Wyy (lUyy + /J,WXX)) rffi 
JQ 

that, in the same manner as for hard clamping of the plate gives us that 
the completion of functions from C^(Cl) satisfying (3.10.29) with respect 
to the energy norm, denoted by Sp/, is a closed subspace of W2'2(Q) whose 
norm is equivalent to the energy norm (3.10.27). £pf is a Hilbert space. 
Exactly in the same manner as it was done for all "free" cases above, we 
can introduce the energy space as a factor space of W2'2{Vi) with respect 
to the set of all linear polynomials a + bx + cy. Using the same energy 
norm for completion we get another version of the energy space £pf whose 
elements are in one-to-one isometric correspondence with the elements of 
the previous version, and thus, characterizing their elements, we can use 
the Sobolev imbedding theorem for W2'2(Cl). 
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3.11 Opera to r s and Functionals 

We have used the terms "operator" and "functional" frequently, and it may 
seem strange that we did not introduce these notions carefully long before. 
However we did not, exploiting instead the synonym "correspondence" for 
the term "operator". 

Definition 3.11.1 A correspondence between two sets (metric spaces) 
X and Y, when to any element of X there corresponds no more than 
one element of Y, is called an operator. Frequently used synonyms for 
"operator" include the terms map, mapping, function, and correspondence. 

The set of those elements x of X at which there is a correspondent 
element y is called the domain of the operator and is denoted D(A). It is 
not necessarily true that each element y € Y is the image of some element 
x € X under the operator; the set of all elements of Y that are images 
of elements of X is known as the range of the operator. The domain and 
range of an operator A are denoted by D(A) and R(A), respectively. 

Definition 3.11.2 If Y is the set of all complex (or real) numbers, then 
an operator acting from X to Y is called a complex (or real) functional 
defined on X. 

An important role in functional analysis is played by linear operators. 
To introduce this notion we need X and Y to be linear spaces. 

Definition 3.11.3 An operator A from a linear space X to a linear space 
Y is a linear operator if for any elements X\ and x-i of X and any scalars A 
and fj, we have 

A(\x\ + /XX2) = XA(xi) + fiA(x2). 

For a linear operator A we shall denote A{x) and Ax interchangeably. 
Linear operators seem to be elementary, but this is not the case. Many 
physical problems are linear. We will extend the definition of continuity of 
a function to operators: 

Definition 3.11.4 Let A be an operator from a normed space X to a 
normed space Y. We say that A is continuous at XQ 6 X if to each e > 0 
there corresponds 5 = 5(e) > 0 such that \\Ax - AXQ\\Y < e whenever 
Hz-zol lx <$• 

Example 3.11.1 Show that any norm is a continuous mapping from X 
to R. Note, however, that it is not a linear functional. 



Functional Analysis 241 

Solution Using the inequality of Example 3.1.1 we can write 

I \\x\\ - Hzoll I < Hz -x0\\. 

Given e > 0 then, we can choose S = e in the definition of continuity. 

For linear operators there is a convenient theorem: 

Theorem 3.11.1 A linear operator defined on a normed space X is con
tinuous if and only if it is continuous at x = 0. 

Proof. Immediate from the relation Ax — Axo = A(x — XQ). • 

There is a central theorem that shows us how to check whether a linear 
operator is continuous: 

Theorem 3.11.2 A linear operator A from a normed space X to normed 
space Y is continuous if and only if there is a constant c such that for all 
x e D(A), 

| | A t | | < c H (3.11.1) 

Proof. Assume (3.11.1) holds. Then with 5 = e/c in the definition of 
continuity we see that A is continuous at x = 0. Conversely, suppose A 
is continuous at x = 0. Take e = 1; by definition there exists 5 > 0 such 
that ||Ac|| < 1 whenever \\x\\ < 8. For every nonzero x € X, the norm of 
x* = Sx/(2 \\x\\) is 

\\x*\\ = \\5x/(2\\x\\)\\=5/2<5, 

so ||Ar*|| < 1. By linearity of A this gives us 

HAc| |<! lMI. 

which is (3.11.1) with c = 2/5. • 

We see why continuous linear operators are often referred to as bounded 
linear operators. 

Definition 3.11.5 The least constant c from (3.11.1) is called the norm 
of A and is denoted \\A\\. 

Note that ||J4|| meets all the axioms of a norm: 

(1) ||A|| is clearly non-negative. If \\A\\ = 0 then ||Ar|| = 0 for all x e X, 
i.e., A = 0. Conversely, if A = 0 then \\A\\ = 0. 

(2) It is obvious that ||AA|| = |A| \\A\\. 
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(3) Prom 

\\(A + B)x\\ = ||Ac + Ba;|| < ||Ac|| + ||Bz|| < ||A|| ||ar|| + ||B|| ||x|| 

we see that \\A + B\\ < \\A\\ + \\B\\. 

We denote by L(X, Y) the normed linear space consisting of the set of all 
continuous linear operators from X to Y under this norm. 

There is also a notion of sequential continuity, as in ordinary calculus: 

Theorem 3.11.3 The operator A from XtoYis continuous at XQ G X 
if and only if A{xn) —* A(XQ) whenever xn —* XQ. 

The proof is easily adapted from the corresponding proof that appears 
in any calculus book. This result justifies manipulations of the form 

A ( lim xn ) = lim Axn (3.11.2) 
\n—>oo / n—>oo 

for continuous operators A. 
Suppose A is a continuous operator acting in a Banach space X. We 

observed earlier that the series s = Yl'kLi xk m a y be defined by the limiting 
operation 

fc=i 

s = lim V^: 
n—>oo ^—^ 

But (3.11.2) allows us to write 

If A is also linear, then 

( oc \ n oo 

fc=i / fc=i fe=i 

So we see that interchanges of the form 

oo oo 
A YlXk = ] C ̂ Xfc 

fc=l fc=l 

are permissible with convergent series and continuous linear operators. 



Functional Analysis 243 

The most frequent operation in mathematical physics is that of finding 
a solution x to the equation 

Ax = y (3.11.3) 

when y is given. Let us introduce the notion of the inverse to A. If for 
any y G Y there is no more than one solution x G X of (3.11.3), then the 
correspondence from Y to X denned by the equation is an operator; this 
operator is called the inverse to A and is denoted A~l. 

Lemma 3.11.1 If A and B are each invertible, then the composition BA 
is invertible with (BA)"1 = A~1B~1. 

The proof is left to the reader. 

Theorem 3.11.4 Let X,Y be normed spaces. A linear operator A on 
D(A) C X admits a continuous inverse on R(A) CY if and only if there 
is a positive constant c such that 

\\Ax\\ >c\\x\\ for all x G D{A). (3.11.4) 

Proof. Assuming the inequality (3.11.4) holds, we see that Ax = 0 im
plies x = 0 so the inverse A"1 exists. Then the same inequality means 
that the inverse is bounded (hence continuous) on R(A). The converse is 
immediate. • 

An operator A that satisfies (3.11.4) is said to be bounded below. 

Example 3.11.2 (a) Show that a bounded linear operator maps Cauchy 
sequences into Cauchy sequences, (b) Show that every bounded linear 
operator has a closed null space. 

Solution (a) Let {xn} be a Cauchy sequence in X. Let e > 0 be given 
and choose N so that n,m > N implies \\xn — xm\\ < e/ \\A\\. For n,m > N 
we have 

\\Axn - Axm\\ = \\A(xn ~ Xm)\\ < \\A\\ \\xn - Xm | | < £, 

so {Ar„} is a Cauchy sequence in Y. (b) Let A be a bounded linear 
operator. The null space of A, often denoted by N(A), is the set of elements 
x such that Ax = 0. Let {xn} be a sequence of points in N(A) with xn —» xo 
as n —• oo. It is easy to see that xo belongs to N(A): 

AXQ = A ( lim xn) = lim Axn = lim 0 = 0. 

This means that N(A) is a closed set. 
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Example 3.11.3 Show that if k(x,£,) is a continuous, real-valued func
tion of the real variables a;,£ on [a,b] x [a, b], then the operator A given 
by 

Af [ k(x,Of(0 
Ja 

d£ 

is a bounded linear operator from C(a, b) to itself. 

Solution The linearity of A is obvious; to see that it is bounded, observe 
that 

\\Af\\ = max 
xG[a,b] 

< max 
x£[a,b] 

< max 
x€[a,6] 

/ k{x,t)f(Z)dt 
J a 

/"V(*. 011/(01 # 

max. | / (x) | f \k(x,Q\d£ 
xe[a,b] J a 

= \\f(x)\\ max / \k(x,Z)\d£. 

So \\Af\\< a H/ll, where 

, 6 

a= max / \k(x,£)\d£. 
x€\a,b] Ja 

Example 3.11.4 Show that if a linear operator is invertible, then its 
inverse is a linear operator. 

Solution Suppose A is linear and A - 1 exists. Let 2/1,1/2 G R{A) where 
Hi = Axi (i = 1,2) and let a\,a2 be scalars. We have 

aij/i + fl22/2 = a\Ax\ + a2Ax2 = A{a,\X\ + a2x2) 

so that 

A 1{a1y1 + <222/2) = a\X\ + a2x2 = a^A 2/1 + a2A
 ly2 

as required. 
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3.12 Some Approximation Theory 

Let X be a normed space. Given x € X and a set of elements gi, •.. ,gn £ 
X, it is reasonable to seek scalars Ai , . . . ,A n that will minimize the dis
tance between x and the linear combination X)r=i »̂S»- ^° w e w o m d like 
to find the best approximation of x from among all the linear combina
tions JZr=i ^i9i- This so called general problem of approximation can be 
rephrased as 

</>(Ai,...,An) -> min 
A i , . . . , A „ 

where <f> is the functional given by 

0(Ai, . . . ,A„) - 53 Ai5i 
i = l 

We take the gi to be linearly independent. If they are not linearly inde
pendent, the solution of the approximation problem will not be unique. 
Note that (j)(\i,..., An) is a usual function in the n variables A,, so we can 
employ the usual tools of calculus. 

Theorem 3.12.1 For any x e X there exists x* = Y17=i Kdi suc^ that 

| |a:-a;* || = inf 0(Ai, . . . ,An). 
A l , . . . , A n 

Proof. An application of the inequality 

I I * - l / l l > I N I - I l l / I l l (3-12.1) 

permits us to show that 4>(Xi, •. •, An) is continuous in the n scalar variables 
A i , . . . , An: 

|<KAi +hi,...,X„ + hn) -(j>(\i,...,\n)\ 

< 

n 

x - 5Z(Aj + hi)gi 
i=l 

r n 

x - J^(Ai + hi)gi 
L i=l n 

^higt 
i = l 

-

-

INI 

n 

1=1 
n "1 

i—\ J 
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Continuity of the function 

tp(Xi,...,Xn) ^2^i9i 
i = l 

is also apparent since it is a particular case of 4>(Xi,..., An) at x = 0, and 
tp(Xi,..., An) must therefore reach a minimum on the sphere YH=\ l^*l2 = 1 
at some point (Aio, • • •, A„o). By linear independence of the gi we have 
•i/>(Aio, • • •, A„o) = d > 0. Also note that ip is a homogeneous function, 

ip(k\i,- • • , kXn) = \k\ ip(Xi,- • • , A„) , 

which means that 

^(Ai,--- ,Xn)>Rd when ( ^ l A i | 2 = i J . 

and that V(Ai, • • •, A„) > Rd for (Ai , . . . , A„) outside a sphere of radius R. 
We wish to show that </>(Ai,..., An) actually attains its minimum value at 
some finite point. 

Since 

</>(Ai,...,A„) > V(Ai,.. . ,A„) - ||x|| 

by (3.12.1), we see that for (Ai , . . . , A„) outside a ball of radius R we have 

</>(Ai,...,A„) > Rd- \\x\\ 

Outside of the sphere of radius R = Ro = 3 ||x|| jd we have 

0 ( A i , . . . , A „ ) > 2 | | i | | 

whereas inside this sphere 0 (0 , . . . ,0) = ||x||. Hence when x ^ 0 (to the 
reader: what happens when x = 0?) the minimum of <p is inside the sphere 
of radius RQ with the centre at the origin. Thus the corresponding closed 
ball of radius RQ contains the minimum point. • 

Uniqueness can be addressed with the help of the following concepts. 

Definition 3.12.1 A normed space X is said to be strictly normed if 
from the equality 

ll* + i/ll = lkll + lltfll» z ^ 0 , (3.12.2) 

it follows that y = Xx for some nonnegative A. 
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Not all normed spaces are strictly normed. For example, the space C(Q) 
is not strictly normed. But some important classes of spaces are strictly 
normed, including LP(Q) and Wl'p(Cl). Later we shall show that every inner 
product space is strictly normed. 

Definition 3.12.2 A subset S of a linear space is said to be convex if 
for any pair x, y € S it contains the whole segment 

Xx + (1-X)y, 0 < A < 1 . 

Theorem 3.12.2 Let X be a strictly normed space, and let M be a closed 
convex subset of X. For any x € X, there is at most one y £ M that 
minimizes the distance \\x — y||. 

Proof. Suppose that 2/1 and j/2 are each minimizers: 

| | a : -y i | | = | | a ; -y2 | |= mi\\x-y\\ = d. (3.12.3) 
yeM 

If x e M, we obtain that y\= yi = x. Suppose x £ M. Then d > 0. By 
convexity (2/1 +y2)/2 6 M, hence 

x — 
V\ +J/2 

>d. 

But 

2/i +2/2 x-yi x -2 /2 
<^\\x-yi\ \\X-V2\ 

so 

z - 2/i , x-y2 r= 
x-yi 

2 + 
x -2/2 

2 

Because X is strictly normed we have x — y\ = A(x — 2/2) for some A > 0, 
hence ||a; — j/i | | = A ||x — 2/2!!- From (3.12.3) we deduce that A = 1, thus 
2/i = 2/2- • 

By this theorem we see that, for a strictly normed space, a solution to 
the general problem of approximation is unique. A set of spaces important 
in applications are included here, as shown next. 

Lemma 3.12.1 Every inner product space is strictly normed. 



248 Calculus of Variations and Functional Analysis 

Proof. Let X be an inner product space, and suppose that x, y G X are 
such that (3.12.2) holds. We have ||x + yf = (||x|| + \\y\\)2; rewriting this 
in the form 

\\xf + 2Re(x,y) + \\yf = ||x||2 + 2 ||x|| ||</|| + ||y||2 , 

we obtain 

Re(x,y) = \\x\\ \\y\\. 

This and the Schwarz inequality show that Im(x, y) = 0 so that 

{x,y) = \\x\\ \\y\\. 

But this last equation represents the case of equality holding in the Schwarz 
inequality, which can happen only if y = Xx for some A. Making this 
replacement for y we obtain (x,Xx) = \\x\\ \\Xx\\, hence A ||x|| = |A| ||x|| . 
Since i ^ O w e have A = |A|, and therefore A > 0. • 

The subspace Hn of an inner product space H that is spanned by g,, i = 
1 , . . . , n, is finite dimensional. We know that for any x £ H there is a unique 
element that minimizes the distance ||x — y\\ over y € Hn. In a Euclidean 
space this element is a projection of the element onto the subspace Hn. Let 
us show that this result on the unique existence of the projection extends 
to a Hilbert space. This extension is the basis for an important part of 
the theory of Hilbert spaces connected with Fourier expansions and many 
other questions. 

Theorem 3.12.3 Let H be a Hilbert space and let M be closed convex 
subset of H. For every x G H, there is a unique y £ M that minimizes 

l l* -y | | -

Proof. Fix x G H. By definition of infimum there is a sequence {yk} C M 
such that 

lim | |x-y f c | | = inf ||x - 2/H. 
k—+oo y£M 

By the parallelogram law 

||2x - j/i - yjf + \\yi - yjf = 2 (||x - j / J 2 + ||x - yjfj , 

hence 

hi ~ Vjf = 2 (\\x - yif + \\x - J/J||2J - 4 x — 
Vi + Vj 
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Since ||a; — yj \\ = d2 + Ej where Sj —> 0 as j —> oo, it follows that 

\\Vi - VjW2 < 2(d2 + Ei + d2 + Sj) - Ad2 = 2(e* + ej) -> 0 as i, j -> oo. 

Therefore {yk} is a Cauchy sequence, and converges to an element y S M 
since M is closed. This minimizer y is unique by Theorem 3.12.2. • 

3.13 Orthogonal Decomposition of a Hilbert Space and the 
Riesz Representation Theorem 

Definition 3.13.1 Let M be a subspace of a Hilbert space H. An el
ement n e H is said to be orthogonal to M if n is orthogonal to every 
element of M. 

In E 3 we may imagine a straight line segment inclined with respect 
to a plane and with one end touching the plane. We may then define the 
projections of the segment onto the plane and onto the normal, respectively. 
The length of the normal projection is the shortest distance from the other 
end of the segment to the surface. The next result is the extension of this 
fact to inner product spaces. 

Lemma 3.13.1 Let H be a Hilbert space and M a closed linear sub-
space of H. Given x G H, the unique minimizer m £ M guaranteed by 
Theorem 3.12.3 is such that (x — m) is orthogonal to M. 

Proof. Let v £ M. The function 

/ ( a ) = \\x — m — av\\ 

of the real variable a takes its minimum value at a = 0, hence 

= 0. 
da a=0 

This gives 

da 
x — m — av, x — m — av) = —2 Re(x — m,v) = 0. 

a = 0 

Replacing v by iv we get Im(x — m,v) = 0, hence (x — m, v) = 0. • 

Definition 3.13.2 Two subspaces M and N oi H are mutually orthog
onal if every n € N is orthogonal to M and every m £ M is orthogonal 
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to N. In this case we write M A. N. If, furthermore, any x £ H can be 
uniquely represented in the form 

x = m + n, me M,n£ N, (3.13.1) 

then we write H = M+N and speak of an orthogonal decomposition of H 
into M and N. 

Note that mutually orthogonal subspaces have zero as their only point 
of intersection. 

Theorem 3.13.1 Let M be a closed subspace of a Hilbert space H. There 
is a closed subspace N of H such that M+N is an orthogonal decomposition 
ofH. 

Proof. Let N be the set of all elements of H that are orthogonal to 
M. We assume M ^ H, hence N J= 0. If n i , n 2 G N so that (ni ,m) = 
(n,2,m) — 0 for every m S M, then (Aini + \2n2,m) = 0 for any scalars 
Ai,A2- Hence N is a subspace of H. To see that N is closed, let {n^} 
be a Cauchy sequence in N. The limit element n* = limfc_oo f̂c exists; it 
belongs to N because 

(n*,m) = lim (rik,m) = 0 for all m e M 
k—*oo 

by continuity of the inner product. 
For any element x € H the representation (3.13.1) exists because we can 

project x onto M to obtain the element m, then obtain n from n = x—m. To 
show uniqueness, assume that for some x there are two such representations: 

x = m,i+ni, x = m2+n2. 

Equating these, we obtain 

m i — 77i2 = n\ — n<i-

Taking the inner product of both sides of this equality with m\ — m2 and 
then with n\ — n2 , we get \\mi —m^W = 0 and ||ni — n-2fj = 0 . • 

Let us now turn to one of the main facts that we shall need from the 
theory of Hilbert spaces. We consider a simple case first. Let { e i , . . . , en} 
be an orthonormal basis of Rn so that any vector x £ l " can be expressed 
as 

n 

X — y Xi&i. 

i= l 
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Now suppose F(x) is a linear functional denned on R™. It is easy to see 
that .F(x) has a representation of the form 

n 

F ( x ) = ^ a ; i C i (3.13.2) 
i= l 

where the Cj are scalars independent of x; indeed, with c, = F(e{) we have 

( n \ n n 

J2^i) =Y,x*F(e*) = I > ^ 
by linearity of F. We can write (3.13.2) as 

F(x) = (x,c) 

where c is a vector in R™, independent of x, whose value is uniquely de
termined by F; in this sense we can say that F has been "represented by 
an inner product." More generally, we have the following important result 
known as the Riesz representation theorem: 

Theorem 3.13.2 Let F(x) be a continuous linear functional given on a 
Hilbert space H. There is a unique element f G H such that 

F(x) = (x, f) for every x e H. (3.13.3) 

Moreover, \\F\\ = | | / | | . 

Hence any bounded linear functional defined on a Hilbert space can be 
represented by an inner product. The element / is sometimes called the 
representer of F(x). 

Proof. Let M be the set of all x for which 

F{x) = 0. (3.13.4) 

By linearity of F{x) any finite linear combination of elements of M also 
belongs to M, hence M is a subspace of H. M is also closed; indeed, a 
Cauchy sequence {rrik} C M is convergent in H to some m* = l im^oo rrifc, 
and by continuity of F(x) we see that m* satisfies (3.13.4). By Theo
rem 3.13.1, there is a closed subspace N oi H such that N ± M and 
such that any x € H can be uniquely represented as x = m + n for some 
m G M and n £ N. We can deduce the dimension of iV. If ni and n-i 
are any two elements of TV, then so is n^ = F{n\)ni — F{n2)n\. Since 
F(n3) = F(m)F(n2) - F(n2)F(ni) = 0 we have n3 e M. But the only 
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element that belongs to both N and M is the zero vector. This means that 
ri2 is a scalar multiple of n\, hence TV is one-dimensional. 

Now choose n e N and define no = nj ||n|[. Any x e H can be repre
sented as 

x = m + ano, m € M, 

where a = (a;,no), and therefore 

F(x) = F(m) +aF(n0) = aF(n0) = F(n0)(x,n0) = (x,F(n0)n0). 

Denoting F(no)no by / we obtain the representation (3.13.3). To establish 
its uniqueness, let fa and fa be two representers: 

F(x) = (x,fa) = (x,fa). 

So (x, / i - fa) = 0 for all x. Setting x = fa - fa we have | |/i - faf = 0 , 
hence fa = fa-

Finally, we must establish | |F| | = | |/ | | . Since this certainly holds for 
F = 0 we assume F ± 0. Then / ^ 0, and 

ll/H2 = (/,/)=i;'(/)<l|i;,||||/ll 

gives ll/H < | |F| | . On the other hand 

m. SUP Hf _ sup fef^pMM.,„ 
by the Schwarz inequality. • 

The Riesz representation theorem states that a continuous linear func
tional on a Hilbert space H is identified with an element of H\ this corre
spondence is one-to-one, isometric, and preserves algebraic operations with 
respect to the elements and functional. The set of all continuous linear 
functionals on a normed space X is called the dual space to X and is denoted 
by X'. In these terms, the Riesz theorem states that X' is isometrically 
isomorphic to X. 

Example 3.13.1 (a) Let a functional in L2(0,2) be given by 

F(f)= I f(x)g(x)dx 
Jo 

where g(x) G L2(0,1) is given. What is the representer of this func
tional given by the Riesz representation theorem in L2(0,2)? (b) Define 
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on L2(0,1) a linear functional by the formula 

G(/ ) = /(0.5). 

What is the representer of this functional according to the Riesz represen
tation theorem? 

Solution (a) We can use 

f ^ ) , S6[0,l], 
\o, xe( i ,2 ] , 

as a representer. (b) The functional G is linear but not continuous in 
L2(0,1), so the Riesz representation theorem is not applicable. The func
tional by its form relates to the d-function, which is not an element of 
L2(0,1). 

The Riesz representation theorem will play a key role when we consider 
the generalized setup of some problems in mechanics. 

3.14 Basis, Gram—Schmidt Procedure, Fourier Series in 
Hilbert Space 

If Y is an n-dimensional linear space, then there are n linearly independent 
elements g\,..., gn £ Y such that every y £ Y can be uniquely represented 
in the form 

n 

y = ^2 ak9k 

for scalars a\,..., an. The scalars are called the components of x. We refer 
to the finite set {ffi}"=1 as a basis of Y. A basis of the space is not unique. 
The concept of basis can be extended to infinite dimensional normed spaces 
as follows: 

Definition 3.14.1 Let X be a normed linear space. A system of elements 
{ej} is called a basis of X if any l E l can be represented uniquely as 

oo 

x = Y,akek t 3 - 1 4 - 1 ) 
fc=l 

for scalars {afc}. 
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The elements a of a basis play the role of coordinate vectors of the space. 
Every such basis is linearly independent. Indeed, with x = 0 equation 
(3.14.1) holds with ctk = 0, and the ctk are unique by assumption. 

A normed space X having a basis is separable. To see this, we note that 
the set of all linear combinations X f̂eLi QkZk with rational coefficients q^ is 
countable and dense in X. 

In practical calculations we normally use finite approximations of quan
tities. For this, finite linear combinations of basis elements are appropriate. 

Definition 3.14.2 Let X be a normed space. A countable system {gi} C 
X is said to be complete in X if for every x € X and e > 0 there is a finite 

linear combination $l£=i ai(s)gi such that x — X ^ i ai(s)9- < e. 

Note that the coefficients a^ of this definition need not be continuous in 
e. 

The space X is separable if it has a countable complete system: the set 
of finite linear combinations with rational coefficients is dense in the set of 
all linear combinations, and thus in the space. 

Among all the bases of R" an orthonormal basis has some advantages 
for calculation. The same can be said of an infinite dimensional Hilbert 
space. A system of elements {gk} C H is said to be orthonormal if 

( l , m = n, 
(9m,9n) = < 

[0, m^n. 
If we have an arbitrary basis {/j}^i of a Hilbert space, we sometimes 

need to construct an orthonormal basis of the space. An orthonormal basis 
of a Hilbert space is not unique. One way to produce such a basis is the so-
called Gram-Schmidt procedure. The process is straightforward. A linearly 
independent set of elements cannot contain the zero vector, so we may 
obtain g\ by normalizing fa: 

5 i = / i / l l / i | | -

To obtain 52, we first generate a vector e2 by subtracting from fa the 
"component" of fa that is the projection of fa on the direction of g\: 

e2 = fa - (fa,91)91 

(recall that g\ is a unit vector). We then normalize e^ to obtain g2: 

9i = e 2 / | | e 2 | | . 
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(Note that e2 ^ 0, otherwise / i and /2 are linearly dependent. The same 
applies to the rest of the ej). 

We obtain 53 from fz by subtracting the components of / 3 that are the 
projections of / 3 on both gi and 52: 

e3 = /3 - {h,9i)gi - {h, 92)92, 93 = e3 / | |e3 | | . 

In general we set 

5i = Tpjj- where e» = /» - ^(/i,5fc)fffc, i = 2 ,3 ,4 , . . . . 
" e * " fc=i 

The reader should verify directly that the Gram-Schmidt procedure actu
ally yields an orthogonal set of elements. 

In linear algebra it is shown that a system {/»}"= 1 is linearly independent 
in K™ if and only if 

( / l , / l ) ( / l , / 2 ) ••• (fl,fn) 

( / 2 , / l ) ( / 2 , / 2 ) ••• ( / 2 , / n ) 
^ 0 . 

( / n , / l ) ( /n , /2 ) ••• (fn,fn) 

The determinant on the left is called the Gram determinant. A finite di
mensional inner product space stands in a one-to-one correspondence with 
R", a correspondence in which inner products are preserved. Thus the 
same Gram criterion is valid for an inner product space as well. It is easy 
to see that every finite orthonormal system is linearly independent, since 
the Gram determinant would reduce to +1 in that case. 

In the space WLn we find the components of a vector x with respect to the 
orthonormal frame vectors ifc by direct projection of x onto ifc: Xk — x • i^. 
Similarly we can define the components of an element of a Hilbert space. 
They are given by 

Definition 3.14.3 Let {g^} be an orthonormal system in a complex 
Hilbert space H. Given / £ H, the numbers ctfc defined by 

ctk = (f,9k), A; = 1 ,2 ,3 , . . . , 

are known as the Fourier coefficients of / with respect to the system {gi}. 

We use the same terms as in the classical Fourier theory of expansion of 
functions, because all the results and even their proofs parallel the results 
for Fourier expansions established in the space L2(a,b). 
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Theorem 3.14.1 Let H be a Hilberi space. A complete orthonormal 
system {gi} C H is a basis of H; with respect to {gi}, any f G H has the 
unique representation 

oo 

/ = 52 ak9k 
k=l 

(3.14.2) 

where ctk = (/, gk) is the hth Fourier coefficient of f. The series (3.14.2) 
is called the Fourier series of f with respect to {gi}. 

Proof. Let / € if be given, and consider approximating / by a finite 
linear combination ^22=1 Cfc3fc °^ the elements {gi}?=i- The approximation 
error is given by 

/ - 52 °k9k 
fc=i 

= ( / - 52 °k9k, / - 52Ck9k 

k=i / fc=i 

and manipulation of the right-hand side allows us to put this in the form 

^ M « 

/ - 52Ck9k 

k=i 
52iQfci2+52iCfc _ a f e i 
fc=i fc=i 

Clearly the error is minimized when Cfc = ctk for each k, so the best ap
proximation is the element given by 

/« = ^2,{f,9k)gk-
fc=i 

We call fn the nth partial sum of the Fourier series for / . Since the error 
is non-negative we also have 

Ei(/>rf< 
fc=i 

known as Bessel's inequality. This shows that 

II J n+m fn\ 
n+m 
52 (f>9k)gk 

k=n+l 

n+m 
= 5 2 K/>5fc)|2->0 a s n - ^ o o , 

k=n+l 

hence {/„} is a Cauchy sequence in H. Since if is a Hilbert space the 
sequence has a limit. We need to show that it coincides with / . Indeed, by 
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completeness of {gi}, for any e > 0 there exists N = N(e) and coefficients 
Cfc(e) such that 

N 

f -^2ck(e)9h 
fc=i 

< e. 

But /JV is at least as good an approximation to / , so 

|2 
11/ - / Wl / - ̂ 2ak9k 

< 
AT 

/ - ^ c f c ( e ) 0 f c 
fc=l 

< e 

and we conclude that / N —> / . Prom this we see that 

/ = lim / „ , 
n—»oo 

and the proof is complete. 

Corollary 3.14.1 Parseval's equality 

iU i i / f c / 

fc=l 

holds for any f £ H and any complete orthonormal system {gi}. 

Proof. We established above that 

Ei(/<^)i2 

D 

(3.14.3) 

f -^2(f>9k)gk 
fc=l 

= ll/ll2-£K/>rf-
fc=i 

(3.14.4) 

D Passage to the limit as n —* oo yields (3.14.3). 

Proving the theorem, we established that the sequence of partial Fourier 
sums is a Cauchy sequence and this fact does not depend on whether {g^} 
is a complete system. We shall use this fact, so we formulate 

Corollary 3.14.2 Let {gk} be an arbitrary orthonormal system in H (not 
necessarily complete). The sequence of partial Fourier sums fn of f € H 
converges to an element f* such that ||/*|| < | | / | | ; f* = f if the system is 
complete. 

Definition 3.14.4 We say that {gt} C H is closed in H if the system of 
equations 

(/,5fc) = 0forallfc = l ,2 ,3 , (3.14.5) 

implies that / = 0. 
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Theorem 3.14.2 An orthonormal system {gi} in a Hilbert space H is 
complete in H if and only if it is closed in H. 

Proof. If {gi} is a complete orthonormal system in H, then any / G H 
can be written as 

oo 

f = ^2(f,9k)gk 
fe=i 

by Theorem 3.14.1. Enforcement of the condition (3.14.5) obviously does 
yield / = 0, hence {gi} is closed. Conversely, assume that {gi} is a closed 
orthonormal system in H. We established previously (Corollary 3.14.2) 
that for any / 6 H the sequence of partial Fourier sums fn — XX=i ak9k is 
a Cauchy sequence converging to some f*&H since H is a Hilbert space. 
We have 

(f - f*,9m) = lim f -y^akgk,gm =am-am = 0 
n—>oo \ *—' / 

\ fc=l / 

hence 

{f-f*,9m)=0 for a U m = 1,2,3, . . . . 

It follows that /* = / since {g%} is closed. Because fn — X/fc=i akgk 
converges to / , the system {g{} is complete by Definition 3.14.2. • 

The existence of the Gram-Schmidt process implies 

Theorem 3.14.3 Any system of elements {gi} (not necessarily orthonor
mal) in a Hilbert space H is complete in H if and only if it is closed in H. 

Theorem 3.14.4 A Hilbert space H has a countable orthonormal basis 
if and only if H is separable. 

Proof. We saw earlier that the existence of a countable basis in a Hilbert 
space provides for separability. Conversely, assume H is separable and 
select a countable set that is dense in H. To this set the Gram-Schmidt 
procedure can be applied (removing any linearly dependent elements) to 
produce an orthonormal system. Since the initial set was dense it was 
complete, hence the Gram-Schmidt procedure yields an orthonormal basis 
oiH. a 

One advantage afforded by the tools of functional analysis is that we can 
discuss many common procedures of numerical analysis in terms to which 
we are accustomed in finite dimensional spaces. A knowledge of this theory 
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gives us an understanding, without long deliberation, of when we can do 
so and when we cannot — some nice finite dimensional pictures become 
invalid or doubtful in spaces of infinite dimension. 

The following result will be used later when we cover the Fredholm 
theory: 

Theorem 3.14.5 Any bounded subset of a Hilbert space H is precompact 
if and only if H is finite dimensional. 

Proof. If H is finite dimensional then we can place it in one-to-one cor
respondence with R™ for some n. Then precompactness of any bounded set 
follows from calculus. 

Next let us suppose that any bounded set of H is precompact but, to 
the contrary, that H is infinite dimensional. We can construct an infinite 
Fourier basis {e^}. Since ||efe — en | | = 2 for k ^ n, the sequence {e^} 
cannot contain a Cauchy subsequence, hence the unit ball of H cannot be 
precompact. • 

Example 3.14.1 Show that every separable, infinite dimensional, com
plex Hilbert space is isometrically isomorphic to (2. 

Solution Let X be a Hilbert space as described. By separability X has 
a countable, complete orthonormal set E = {ek}'kL1. For any x G X, 
denote the nth Fourier coefficient with respect to E by an. Since E is 
complete we have ||a;||2 = Y^=i \an\2 < oo, hence a = ( a i , a 2 , . . . ) G £2. 
Define a transformation A from X to I2 by Ax = a. Because A is clearly 
linear we can show that it is injective by showing that N(A) = {0}. But 
Ax = 0 implies a = 0, hence each ctk = 0, hence (x,ek) = 0 for each k, 
hence x = 0 since the orthonormal set E is closed. Next we show that 
A is surjective. Choose any y — (771,772,. ••) G ^2; since J2n°=i I7?™!2 < 

00, the series JZ^Li Vn^n = x for some x € X. Moreover we have r\n = 
(a;, e„) for all n, and from this we see that ||Ar|| = ||y|| = Yln°=i I7?™!2 = 

X ^ i \{xi en)\2 — \\x\\ • That is, A is also an isometry. 

3.15 Weak Convergence 

It is easy to show that {xfe} is a Cauchy sequence in Rn if and only if each 
of its component sequences {(xfc, ij)}, j = 1 , . . . , n, is a numerical Cauchy 
sequence. So in Rn, norm convergence is equivalent to component-wise 
convergence. Remember that, besides, all the norms in R" are equivalent. 



260 Calculus of Variations and Functional Analysis 

Unlike Rn , in an infinite dimensional Hilbert space, where the role of com
ponents is played by the Fourier coefficients of an element, the component
wise convergence of a sequence does not guarantee strong convergence of 
the same sequence. Indeed, consider the sequence composed of the elements 
of an orthonormal basis {<%}. The sequence of the j t h Fourier component 
(9 k, 9j) —> 0 as k —> oo because of the mutual orthogonality of the elements 
of the basis; hence, by similarity to the case of R™, we could conclude that 
the zero element is a limit. But {<%} does not have a strong limit, because 
Hfffc — 3m || = \/2 whenever k / m. However, component-wise convergence 
in a Hilbert space is still important, and we need to introduce a suitable 
notion. A component in Hilbert space is given by the Fourier coefficient, 
which is found through the use of an inner product. This coefficient is a 
continuous linear functional on H. So a natural extension of the definition 
of component-wise convergence is 

Definition 3.15.1 Let {xk} C H where H is a Hilbert space. We say 
that {xk\ is a weak Cauchy sequence if {F(xk)} is a (numerical) Cauchy 
sequence for every continuous linear functional F(x) defined on H. 

In contrast, we know that {x^ is a Cauchy sequence in H if 

||#n — xm t| —>• 0 as m, n —» oo. 

In this latter case we shall refer to {xk} as a strong Cauchy sequence when
ever there is danger of ambiguity. It is apparent that every strong Cauchy 
sequence is a weak Cauchy sequence. We also observe that, by the Riesz 
representation theorem, {xk} is a weak Cauchy sequence if the numerical 
sequence {(xn,f)} is a Cauchy sequence for every element / e H. But 
above we showed the existence of a sequence that is a weak Cauchy se
quence but not a strong Cauchy sequence. Thus we have denned a new 
kind of convergence in a Hilbert space. We shall rephrase all the notions of 
strong continuity for the weak version. 

Definition 3.15.2 Let XQ S H. If F(xn) —> F(xo) for every continuous 
linear functional F(x) defined on H, we write 

Xfi XQ 

and say that {xn} is weakly convergent to XQ. Alternatively, by the Riesz 
representation theorem we have xn -A XQ if and only if (xn,f) —> (xo,f) 
for every element / € H. 
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Recalling that the strong limit of a sequence is unique, we might wonder 
whether weak limits also share this property. The answer is affirmative: 

Theorem 3.15.1 If a sequence in a Hilbert space has a weak limit, the 
limit is unique. 

Proof. Suppose there are two weak limits x* and x** of a sequence {xk}. 
An arbitrary continuous linear functional, by the Riesz representation the
orem, is F(x) = (x,f). When k tends to infinity the numerical sequence 
{xk,f) can have only one limit (by calculus), so (x**,f) = (x*,f). This 
holds for any / e H, and thus for / = x** — x*. But then it follows that 
\\x** -x*\\2 =0. a 

There is a simple and convenient sufficient condition for a weakly con
vergent sequence to be strongly convergent: 

Theorem 3.15.2 Suppose Xk —*• xo in a Hilbert space H. Then \\xk\\ —> 
||a;o|| implies that Xk —• XQ as k —> oo. 

Proof. For each k we have 

||zk-ffo|| =(xk-x0,xk-xQ) = \\xk\\ - (x0,xk) - (xk,x0) + ||x0||2. 

But as k —> oo both (xo,Xk) and (xk,xo) approach ||xo|| by definition 
of weak convergence, and we have ||a;fc|| —> ||a:o|| by assumption. So 
W^k — %o\\ —> 0 as k —» oo. D 

We know that a strong Cauchy sequence is bounded. It is not immedi
ately apparent that a weak Cauchy sequence has this property. However, 
we have 

Theorem 3.15.3 In a Hilbert space, every weak Cauchy sequence is 
bounded. 

Proof. Suppose that {xn} is a weak Cauchy sequence in H with ||a;n|| —> 
oo as n —* oo. Before seeking a contradiction we establish an auxiliary 
fact: if B(yo,e) is a closed ball of some radius e > 0 and arbitrary center 
j/o € H, then it is possible to find a sequence {yn} C B(yo, e) such that the 
numerical sequence 

{XniVn) —> ° ° 9-S U —» 00. (3 .15 .1) 

The sequence {yn} given by 

Vn = yo + £2tj\ 
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is suitable. Indeed 

\\yn-yo\\ = 
21k. 

£ 
= 2 < £ 

shows that yn G B(yo,e) for each n. Furthermore, 

(xn,yn) = (xn,yo) + ^- j j—M(Z„,X„) = (a;„,y0) + ^ ||a;„|| 

establishes (3.15.1) since the numerical sequence {(xn,yo)} is a Cauchy 
sequence by definition of weak convergence of {xn}, and every Cauchy 
sequence is bounded. 

We are now ready to obtain a contradiction. Starting with e\ = 1 and 
2/o = 0, we can find xni and y\ G B(yo,e\) such that 

(xni,yi)>l. (3.15.2) 

By continuity of the inner product in the second argument, there is a ball 
-6(2/1,62) c B(l/o, £1) such that (3.15.2) holds not only for y\ but for all 
y£B{y1,e2): 

{xni,y) > 1 for all y G B(yl,e2). 

Similarly, we can find xn2 (with n2 > ni) and 2/2 G 5(2/1, £2) such that 

(2:712,2/2) > 2, 

and, by continuity, a ball B(y2, £3) C B(yi,e2) such that 

(x„2,2/) > 2 for all 2/ G B(y2,s3). 

Continuing this process we generate a nested sequence of balls B(yk, 6k+i) 
and a corresponding subsequence {xnk} of {xn} such that 

(xnk,y) > k for all y G B(yk,ek+i). 

Since iJ is a Hilbert space the intersection f]k B(yk,£k+i) is nonempty, 
hence there exists y* such that (xnk ,y*) > k for each A:. For the continuous 
linear function F*(x) = {x,y*) then, the numerical sequence {F*(xnk)} is 
not a Cauchy sequence. Because {xnk} is not a weak Cauchy sequence, 
neither is {xn}. This is the contradiction sought. • 

As a byproduct of this proof we have 
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Lemma 3.15.1 If {xk} is an unbounded sequence in H, i.e., \\xk\\ —» oo 
as k —• oo, then there exists y* e H and a subsequence {xnk} such that 
(xnk,y*) —> oo as k —> oo. 

We now present another important theorem with which we can show 
boundedness of some sets in a Hilbert space. Set boundedness plays an 
important role in the applications of functional analysis to mathematical 
physics. The present result is called the principle of uniform boundedness: 

Theorem 3.15.4 Let {Fk{x)}k
KL1 be a family of continuous linear func-

tionals defined on a Hilbert space H. If supfc |Ffc(a;)| < oo for each x € H, 
then supfc ||Ffe|| < oo. 

Proof. Each Fk(x) has Riesz representation Fk(x) = (x, fk) for a unique 
fk € H such that ||/fc|| = ||Ffe||. So it suffices to show that if supfc |(a;, fk)\ < 
oo for each x £ H, then supfc ||/fc|| < oo. We prove the contrapositive of 
this. Assuming supfc ||/fc|| = oo, we see that Lemma 3.15.1 guarantees the 
existence of xo 6 H and a subsequence {fkn} such that |(:ro, fkn)\ —> oo as 
k —> oo. This completes the proof. • 

Corollary 3.15.1 Let {Fk{x)} be a sequence of continuous linear func
tional given on H. If for every x G H the numerical sequence {Fk(x)} is 
a Cauchy sequence, then there is a continuous linear functional F(x) on H 
such that 

F(x) = lim Fk{x) for all x e H (3.15.3) 
k—>oo 

and 

\\F\\ <liminf| |F f c | | < oo. (3.15.4) 
k—*oo 

Proof. The limit in (3.15.3) exists by hypothesis and clearly defines a 
linear functional F{x). By Theorem 3.15.4 we have supfe ||.Ffc|| < oo; from 

\F(x)\= lim |Ffc(a;)|<sup||Ffc||||a;|| 
k—*oo k 

it follows that F(x) is continuous. Writing 

\F(x)\ = lim \Fk(x)\ < liminf ||Ffe|| | |x||, 
fc—»oo fc^oo 

we establish (3.15.4). • 

Because of the Riesz representation theorem we can rephrase this as 
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Theorem 3.15.5 A weak Cauchy sequence in a Hilbert space has a weak 
limit belonging to the space. This means that any Hilbert space is weakly 
complete. 

It is therefore unnecessary for us to introduce the notion of weak com
pleteness of a Hilbert space separately. 

Theorem 3.15.6 A sequence {xn} C H is a weak Cauchy sequence if 
and only if the following two conditions hold: 

(i) {xn} is bounded in H; 
(ii) for any element from a complete system {fa} in H, the sequence of 

numbers {(xn, fa)} is a Cauchy sequence. 

Proof. Since necessity of the two conditions follows from Theorem 3.15.3 
and Definition 3.15.2, we proceed to prove sufficiency. Suppose conditions 
(i) and (ii) hold, and let e > 0 be given. Condition (i) means that ||a;n|| < M 
for all n. Take an arbitrary continuous linear functional defined by its 
Riesz representer f £ H as (x,f). By (ii) there is a linear combination 

/e = EfcLi °kfk s u c h t h a t 

| | / - / e | | < e / 3 M . 

We have 

\\Xn Xm, J ) \ = \\Xn — Xm, Js i J ~ Je)\ 

S \\%n %mi ]e)\ T \[Xn ~~ Xmi J ~ Je)\ 

N 

< J2 \Ck\\(xn ~ Xm, fk)\ + {\\Xn\\ + \\xm\\) | |/ - /e|| • 

By (ii), {(xn, fk)} is a Cauchy sequence for each k. Therefore for sufficiently 
large m, n we have 

JV 

5 3 ICfclK̂ n - Xm, fk)\ < e/3. 

So 

\(xn ~ xm, f)\ < e/3 + 2Me/(3M) = e 

for sufficiently large m, n, as required. • 

Definition 3.15.3 A set S in an inner product space X is said to be 
weakly closed if xn —*• XQ 6 X implies that XQ 6 S. 
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Lemma 3.15.2 In a Hilbert space, any closed ball with center at the 
origin is weakly closed. 

Proof. From the ball ||a;|| < M, choose a sequence {xn} that converges 
weakly to x0 e H. We shall show that ||aro|| < M. The formula 

F(y) = lim (y, xn) 
n—*oo 

defines a linear functional on H. This functional is bounded (i.e., continu
ous) because 

\F(y)\= lim \(y,xn)\<M\\y\\, 

and we see that ||.F|| < M. Applying the Riesz representation theorem we 
obtain F(y) = (y,f) for a unique / S H such that | | / | | < M. So we can 
write 

lim {y,xn) = (y,f) 
n—*oo 

for any y S H, and conclude that xn —*• / . D 

A result known as Mazur's theorem (see, for example, Yosida [Yosida 
(1965)]) states that every closed convex set in a Hilbert space is weakly 
closed. This would apply to the previous case, as well as to any closed 
subspace of a Hilbert space. 

Definition 3.15.4 Let S be a subset of an inner product space. We say 
that S is weakly precompact if every sequence taken from S contains a weak 
Cauchy subsequence. We say that S is weakly compact if every sequence 
taken from S contains a weak Cauchy subsequence that converges weakly 
to a point of S. 

Next, we see that a bounded set in a separable Hilbert space is weakly 
precompact. 

Theorem 3.15.7 Every bounded sequence in a separable Hilbert space 
contains a weak Cauchy subsequence. 

Proof. Let {xn} be a bounded sequence in a separable Hilbert space H, 
and let {gn} be an orthonormal basis of H. By Theorem 3.15.6 it suffices to 
show that there is a subsequence {xnk} such that, for any fixed gm, the nu
merical sequence {(xnk,gm)} is a Cauchy sequence. Let us demonstrate its 
existence. Prom the bounded numerical sequence {(xn,gi)} we can choose 
a Cauchy subsequence {(xni,gi)}- Then, from the bounded numerical se
quence {{xni,g2)} we can choose a Cauchy subsequence {{xn^,g2)}- We 
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can continue this process, on the kih step obtaining a Cauchy subsequence 
{(xnk,9k)}- The diagonal sequence {xnn} has the property that for any 
fixed gm the numerical sequence {(xnn,gm)} is a Cauchy sequence. Hence 
{xnn} is a weak Cauchy sequence. • 

A simple but important corollary of this and Lemma 3.15.2 we formulate 
as 

Theorem 3.15.8 In a Hilbert space, any closed ball with center at the 
origin is weakly compact. 

That is, a bounded sequence {xn} with ||xn | | < M has a subsequence 
that converges weakly to some x* with ||a:*|| < M. We shall use this fact 
in the next chapter. 

Example 3.15.1 Prove the following assertions, (a) If {xn} is a (strong) 
Cauchy sequence, then it is a weak Cauchy sequence, (b) Let {xn} be a 
weak Cauchy sequence, and suppose that one of its subsequences converges 
(strongly) to XQ. Then {xn} converges weakly to xo. (c) If {xn} converges 
weakly to xo, so do each of its subsequences, (d) Suppose Xk —*• x and 
j/fc —̂  y. Then Xk + Vk —^ x + y, and axk —*• ax for any scalar a. (e) Let 
Xn XQ and yn —> y0- Then (xn,yn) —> {x0,yo) as n —> oo. 

Solution Let F be an arbitrary continuous linear functional, (a) Let 
e > 0 be given, and choose N so large that n,m > N imply ||arn — xm\\ < 
e/ \\F\\. Then for n,m > N we have 

\F(xn) - F(xm)\ = \F(xn - xm)\ < \\F\\ \\xn -xm\\< e. 

(b) Since {xn} is weakly Cauchy, the sequence {F(xn)} is Cauchy. Also, 
xnic —> XQ implies that F(xnk) —> F(xo). Because the Cauchy sequence 
{F(xn)} has a subsequence {F(xnk)} that converges to F(xo), the whole 
sequence converges to F(xo)- This shows that xn converges to XQ weakly. 
(c) If xn —>• xo, then F(xn) —> ^(aio). But then ^(^nn.) —> F(a;o) for 
every subsequence {F(xnk)} of {F(a;„)}. (d) We have F(xk) —> ^(a;) and 
F(yk) -* F(y). Hence 

^(^fc + Vk) = F(xk) + F{yk) -> F(a;) + F(y) = F(x + y) 

and 

F(axk) = aF{xk) -> aF(a;) = F(az ) . 
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(e) We have 

\(xn,yn) - (xQ,yo)\ < \{xn,yn) - (xn,y0)\ + \(xn,y0) - (x0,y0)\ 

= \{xn,yn -yo)\ + \(xn,yo) - (xo,yo)\ 

< \\xn\\ \\yn -j/o|| + \(xn,yo) - (xo,yo)\. 

The first term tends to zero as n —• oo because the weakly convergent 
sequence {xn} is bounded and \\yn — yo\\ —> 0. The second term tends to 
zero by weak convergence of {xn} to XQ-

3.16 Adjoint and Self-adjoint Operators 

In the theory of matrices, for a matrix A the equality 

04x,y) = (x,,4Ty) 

which is valid for any x, y, introduces a dual (conjugate) matrix AT. The 
formula for integration by parts (when g(0) = 0 = g(l)), 

/ f'(x)g(x) dx = - / f(x)g'(x) dx, 
Jo Jo 

introduces a correspondence between the operator of differentiation (of the 
first argument / ) and a dual operator, —d/dx, for the second argument. For 
a linear differential operator with constant coefficients, integration by parts 
can be used to find a corresponding dual operator that plays an important 
role in the theory of differential equations. An extension of these ideas to 
the general case brings us to the notion of adjoint operator. 

Let H be a Hilbert space and A a continuous linear operator from H 
to H. For any fixed y G H, we can view the inner product (Ax, y) as a 
functional with respect to the variable x & H. This functional is linear: 

(A(Xxi + nx2),y) = (XAxi + fiAx2,y) = X(Axi,y) + fi(Ax2,y). 

It is also bounded (i.e., continuous) since 

|(Ar li/)|<||Ar||||i / | |<||A||||y||W 

by the Schwarz inequality and the fact that A is bounded. By the Riesz 
representation theorem we can write 

(Ax, y) = (x,z) 
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where z € H is uniquely determined by y and A. The correspondence 
y i—> z defines an operator that we shall denote by A*. 

Definition 3.16.1 Let A be a continuous linear operator acting in H. 
The operator A* from H to H given by 

{Ax, y) = {x, A*y) for all x e H 

is called the adjoint of A. 

Let us verify that A* is a linear operator. For any y\, y2 S H we have 

(Ar, 2/j) = {x, A*yi), {Ax, y2) = (x, A y s ) , 

and, if A and \i are any scalars, {Ax, \y\ + ^2/2) = (x, A*(Aj/i + ^2/2))- Hence 

(x,A*(Ayi +m-i)) = A(AX,J/I) + /I(AE,2/2) 

= (x,AAyi) + (x,/^4*y2). 

Therefore, since a; G i? is arbitrary, 

4* (A|/! + M/a) = AAyj + M*2/2 

Let us proceed to some other properties of A*. 

L e m m a 3.16.1 We have 

{A + B)*=A* + B*, {AB)* = B*A*, 

for any continuous linear operators A,B acting in H. 

Proof. The first property is evident. We write 

{x,{AB)*y) = {{AB)x,y) = {A{Bx),y) = {Bx,A*y) = {x,B*{A*y)) 

= {x, {B*A*)y) 

to establish the second property. • 

L e m m a 3.16.2 If A is a continuous linear operator, then so is A*; more
over, 

\\A*\\ = \\A\\. 
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Proof. Define5 

M = sup KAX>V)1. 
x,yeH \\x\\ \\y\\ 

By the Schwarz inequality 

M< sup"';," in, , " = HAH . 
x,yeH \\x\\ \\y\\ 

But we also have 

x,yeH \\x\\ \\y\\ 

and can put x = A*y to obtain a new value 

| (^y,>l*y) | \\A*y\\ 
M l = S U P II A* II II II = S U P || || ' 

!/efl P*2/ll II2/II yeH \\y\\ 

Since Mi < M we see that A* is bounded and 

M! = 11̂*11 < M < ||A||. 
So A* is continuous with ||A*|| < ||A||. The reverse inequality follows from 
the next lemma. • 

Lemma 3.16.3 (A*)* = A. 

Proof. Since A* is continuous we have 

(x,(A*)*y) = (A*x,y) = (y,A*x) = (Ay,x) = (x,Ay) 

for any x,y 6 H. • 

We are now ready to consider some specific examples. In preparation 
for this it will be helpful to have 

Definition 3.16.2 An operator A is said to be self-adjoint if A* = A. 

Let us note that for boundary value problems the equality A* = A 
means not only coincidence of the form of the operators, but coincidence 
of their domains as well. This remark becomes important when in math
ematical physics one introduces the notion of the adjoint to an operator 
having a domain that is only dense in the space. Then one may introduce 
symmetrical operators (these are such that the form of the adjoint operator 

5Here it is evident that the sup should be taken only over x,y ^ 0, so we suppress 
this condition to simplify the notation. 
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remains the same) and self-adjoint operators for which there is complete 
coincidence with the original operator. 

On the space £2 having elements x = (x\, X2, • • •), we can define a matrix 
operator A by 

oo 

( A x ) j = y djjXj. 

It follows from 

\Ax\\P = 

that 

oo / oo 

7 j I 7 y
aijxj 

i = l \ j = l 

1/2 

< 
oo oo oo 

E E I ^ E W 
i = l J = l fc=l 

1/2 

OO OO 

i = l J = l 

1/2 

Suppose 

/ OO OO \ 

E E M 2 ^M 

\i=l j=\ j 

so A becomes continuous. From 

oo / oo 

(Ax, y) = E E aijxjVi = E XJ ( E a ^ y i ) = (x- ^*y) 
i = l j = l j = l \ i = l / 

we see that A* is defined by 

(A*y)j = E a i J y i -
8 = 1 

It is evident that A is self-adjoint if a^ = aji for all indices i, j . A continuous 
analogue of this example is the integral operator B acting in L2(0,1) denned 
by 

(Bf)(x)= f k(x,s)f(s)ds. 
Jo 



Functional Analysis 271 

Here k(x, s) is a function known as the kernel of the operator. The inequal
ity 

2 ^ 1 / 2 

! I B / I I L * ( O , I ) = I / / Kx,s)f(s)ds dx I 

1/2 

< (J (J \k(x,s)\2dsj \f(s)\2ds\ dx 

= U J \Hx,s)\2dsdxJ | | / | | L 2 ( 0 i l ) 

shows that B is bounded if k(x, s) € L2([0,1] x [0,1]) and that 

l|5|| <( f f \k(x,s)\2dsdx) . 

Manipulations analogous to those done for the matrix example above show 
that B* is given by 

(B*g)(s)= k(x,s)g(x)dx. 
Jo 

Clearly B is self-adjoint if k(x, s) = k(s, x) and k(x, s) e L2([0,1] x [0,1]). 

Definition 3.16.3 An operator acting in a Hilbert space is said to be 
weakly continuous if it maps every weakly convergent sequence into a weakly 
convergent sequence. 

Lemma 3.16.4 A continuous linear operator acting in a Hilbert space is 
also weakly continuous. 

Proof. Let A be continuous on H and choose {xn} such that xn -*• xo in 
H. An arbitrary continuous linear functional F(x) takes the form F(x) = 
(x,f) for some / € H, hence we must show that (Axn — AXQ, f) —> 0 as 
n —> oo. But 

(Axn - AX0, f) = (xn - x0, A*f) -> 0 as n -> oo 

since A*feH and {xn} converges weakly to so- • 

We see from the above proof that 

%n —̂  2^0 »* AXn ^ AXQ, 

analogous to the case with ordinary (strong) continuity. 
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In the justification of many numerical methods for the solution of bound
ary value problems, the following simple lemma plays an important role. 

Lemma 3.16.5 Assume that A is a continuous linear operator acting in a 
Hilbert space H. Ifxn-

Xx0 andyn —> yo in H, then (Axn, yn) —* (Axo,yo)-

Proof. We will show that (Axn,yn) - (Ax0,y0) —• 0. We have 

(Axn,yn) - (Ax0,y0) = (xn,A*yn) - (x0,A*y0) 

= (xn, A*yn) - (xn, A*y0) + (xn, A*y0) - (x0, A*y0) 

= (xn,A*{yn -yo)) + (xn -xQ,A*y0). 

The first term on the right tends to zero because 

\(xn,A*(yn-yo))\<\\xn\\\\A*\\\\yn-y0\\ 

and yn —* yo (here ||x„|| is bounded since {xn} is weakly convergent); the 
second term tends to zero because xn —»• XQ. D 

Sometimes it is important to obtain an exact value or accurate bound 
for the norm of an operator. For a self-adjoint operator this can be done 
through the use of the following theorem. 

Theorem 3.16.1 If A is a self-adjoint continuous linear operator given 
on a Hilbert space H, then 

\\A\\ = sup |(Ac,a;)|. (3.16.1) 
IWI<i 

Proof. Let us denote the right side of (3.16.1) by 7. By the Schwarz 
inequality 

7 < sup {||Ar|| | |X||} < sup {\\A\\ \\xf} = \\A\\. 
IHI<i l|x||<i 

The reverse inequality, which completes the proof, takes a bit more effort to 
establish. First, by definition of 7 we have |(Ax,:r)| < 7 whenever ||x|| < 1. 
Hence, replacing x by xj ||x||, we can write 

| ( A C > x ) | < 7 | N | 2 

for any x € H. Setting x\ = y + Xz and X2 = y - Xz where A G K and 
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y,z S H, we have 

C = |(i4a;i,xi) - (Ax2,xi)\ 

= \2X\\(Ay,z) + (Az,y)\ 

= \2X\\(Ay,z) + (z,Ay)\. 

On the other hand 

C< \(Ax1,x1)\ + \(Ax2,x2)\ 

<7(NH2 + ||o;2||
2) 

= 27(||y||2 + A2||z||2) 

by the parallelogram equality, so 

| 2 A | | ( ^ , Z ) + (z )Ay)|<27( | |y | |2 + A2 | |z||2). 

Since this holds for all y, z G H we may set z = Ay to obtain 

\4X\\\Ay\\2<21(\\y\\2 + \2\\Ayf). 

With A = IIJ/H / \\Ay\\ this reduces to \\Ay\\ < 7 \\y\\ and so \\A\\ < 7. D 

Note that if A satisfies the conditions of the theorem and (Ax, x) = 0 
for all x € H, then A is the zero operator. 

3.17 Compact Operators 

Using computers we can successfully solve finite systems of linear algebraic 
equations. A computer performs a finite number of operations, so if we 
need to solve a problem with some accuracy it should have a structure 
close to that of finite algebraic equations. An important class of operators 
with which problems of this kind arise is the class of compact operators. 

In this section we take X to be a normed space and Y to be a Banach 
space. 

Definition 3.17.1 Let A be a linear operator from X to Y. We say that 
A is compact if it maps bounded subsets of X into precompact subsets of 
Y. 

It suffices to show that A maps the unit ball of X into a precompact 
subset of Y. (By "the unit ball" of a space, if nothing is said about its 
center, we mean a ball of radius 1 centered at the origin of the space.) This 
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follows from the linearity of A. It is also evident that A is compact if and 
only if every bounded sequence {xn} in X has a subsequence whose image 
under A is a Cauchy sequence in Y. 

In the space R" with a fixed basis, a matrix A defines a continuous linear 
operator that is denoted by A as well. Such an operator A maps a closed and 
bounded subset of K™ into a closed and bounded subset of Rn; so the image 
is compact, and A is a compact operator. In an infinite dimensional space 
a continuous linear operator is not in general compact. For example, the 
identity operator / on C(0,1) performs the simple mapping f(x) >—> f(x). 
Therefore / maps the unit ball of C(0,1) into itself, but the unit ball of 
C(0,1) is not precompact. 

Theorem 3.17.1 Every compact linear operator is bounded, hence con
tinuous. 

Proof. Suppose A is not bounded. Then we can find a bounded sequence 
{xn} in X such that | |AE„ | | —> oo. As {Aa;n} contains no convergent 
subsequence, A is not compact. D 

It is clear that the zero operator is compact. Let us present a non-trivial 
example of a compact linear operator. Consider the operator A from C(0,1) 
to C(0,1) given by 

(Af)(t)= f h(t,r)f(r)dT, 
Jo 

where the kernel function h(t,r) is continuous on the square [0,1] x [0,1]. 
Let B\ be the unit ball of C(0,1), and let S = A{B\). Because h is 
continuous there exists a > 0 such that \h(t,r)\ < a, and thus 

max \(Af)(t)\ < a max | / ( t ) | < a 
te[o,i] te[o,i] 

whenever f(t) e B\ (i.e., whenever \f(t)\ < 1 on [0,1]). We conclude that 
S is uniformly bounded. S is also equicontinuous: we have 

\(Af)(t2) - (X/)( t i ) | < / \h(t2,r) - h(tur)\ | / ( r ) | dr 
Jo 

< max \h(t-2,T) — h(ti,T)\ 
T € [ 0 , 1 ] 

for f(t) S J5i, and, given e > 0, the uniform continuity of h(t, r) guarantees 
that we can find 6 such that \h(ti,r) — h(ti,r)\ < e whenever \t2 — t\\ < 6 
and r 6 [0,1]. So by Arzela's theorem S is precompact, and we conclude 
that A is a compact operator. 
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We now consider a practically important class of compact linear opera
tors. An operator is called one dimensional if its image is a one dimensional 
subspace. The general form of a continuous one dimensional linear operator 
T is evidently 

Tx = (F(x))y0 

where F is a continuous linear functional and j/o is some fixed element of 
the image. A one dimensional linear operator is compact. Indeed, the 
functional F maps the unit ball B with center at the origin into a bounded 
numerical set F(B), so it is precompact. Thus the set F(B)y0 is precompact 
in the space Y as well. A linear operator Tn is called finite dimensional if 

n 

Tnx = J2(Fk(x))Vk 
fc=i 

where the Fk are linear functional in X and the yk are some elements of 
Y. If the Fk are continuous then so is Tn. Because each component of Tn 

is a compact linear operator, so is Tn\ this is a consequence of the following 
general theorem. 

Theorem 3.17.2 If A\ and A2 are compact linear operators from X to 
Y, then so is each operator of the form \Ai + /i^2 where A, ji are scalars. 

Proof. If {xn} is a bounded sequence in X, it has a subsequence {xni} 
for which {A\Xni} is a Cauchy sequence in Y. Because this subsequence is 
itself a bounded sequence, it has a subsequence { i n J for which {A2Xn2} 
is a Cauchy sequence. The image subsequences {Aixn2} and {A2Xn2} are 
both Cauchy sequences then. Weighting by the scalars A and [x does not 
affect whether a sequence is a Cauchy sequence, and the sum of two Cauchy 
sequences is a Cauchy sequence. Therefore the operator \A\ + 12A2 is 
compact. • 

This theorem means that the set of compact linear operators from X to 
Y is a linear subspace of L(X, Y). 

Lemma 3.17.1 Let A and B be linear operators in X. If A is com
pact and B is continuous, then the composition operators AB and BA are 
compact. 

Proof. If M is any bounded subset of X, then B{M) is bounded. But 
the compact operator A maps bounded sets to precompact sets, so AB(M) 
is precompact as required. The proof for BA is left to the reader. • 
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Theorem 3.17.3 If A £ L(X,Y) is compact, then A maps weak Cauchy 
sequences from X into strong Cauchy sequences in Y. 

Proof. Let {xn} be a weak Cauchy sequence in X. Then {xn} is bounded 
and, since A is a compact operator, the sequence {Aa;n} contains a strong 
Cauchy subsequence {Axni}. This Cauchy subsequence converges to some 
y £ Y since Y is a Banach space. It is easy to show that {^a^} is a 
weak Cauchy sequence in Y\ furthermore, because one of its subsequences 
converges strongly to y, the whole sequence {J4X„} converges weakly to 
y£Y. 

We now show that {Arn} converges strongly to y. Suppose to the 
contrary that it does not. Then there is a subsequence {Axn2} and s > 0 
such that 

\\Axn2-y\\>e (3.17.1) 

for each n^- But from {Axn2} we can select a subsequence {Axn3} that 
is a strongly Cauchy sequence in Y and thus has a limit yi £ Y. This 
subsequence converges weakly to the same element y\. By the paragraph 
above it also converges weakly to y. But we must have y\ = y by uniqueness 
of the weak limit; hence Axn3 —> y, and this contradicts (3.17.1). • 

In a separable Hilbert space this result can be strengthened: 

Theorem 3.17.4 A linear operator A acting in a separable Hilbert space 
H is compact if and only if it takes every weak Cauchy sequence {xn} into 
the strong Cauchy sequence {Axn} in H. 

Proof. Suppose that A maps every weak Cauchy sequence {xn} C H 
into the strong Cauchy sequence {Axn} C H. To show that A is compact, 
we take a bounded set M C H and show that A(M) is precompact. Take 
a sequence {yn} c A(M) and consider its preimage {xn} C M (i.e., the 
sequence for which Axn = yn). Because {xn} is bounded it contains a weak 
Cauchy subsequence { i „ J . By hypothesis {Ar„fe} is a strong Cauchy 
sequence in H, hence A(M) is precompact. The converse was proved in 
Theorem 3.17.3. • 

Example 3.17.1 Show that if xn —*• xo, and A from X to Y is compact, 
then Axn —> AXQ as n —-> oo. 

Solution If {xn} is weakly convergent then it is weakly Cauchy and by 
Theorem 3.17.3 we have Axn —> y for some y £Y. Since strong convergence 
implies weak convergence we have Axn -+ y for some y £ Y. On the other 
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hand A is compact, hence continuous, hence weakly continuous, so xn —*• XQ 
implies Axn —*- AXQ. Finally, y = AXQ by uniqueness of the weak limit. 

Recall that L{X,Y) is a normed linear space under the operator norm 
||-||. If {An} is a sequence of linear operators such that 

lim || A , - A\\ = 0, 
n—>oo 

then {An} is said to be uniformly convergent and the operator A is known 
as the uniform operator limit of the sequence {An}. 

Theorem 3.17.5 A uniform operator limit of a sequence of compact lin
ear operators is a compact linear operator. 

Proof. Let {An} c L(X,Y) be a sequence of compact linear operators 
and suppose \\An — A\\ —> 0 as n —• oo. Our approach is to take any 
bounded sequence {xn} C X and show that we can select a subsequence 
whose image under A is a Cauchy sequence in Y. By compactness of A\ we 
can select from {xn} a subsequence {xni} such that {j4ia;ni} is a Cauchy 
sequence. Similarly, by compactness of A2 we can select from {xni} a 
subsequence {xn2} such that {J42O;„2} is a Cauchy sequence. Continuing in 
this way, after the A;th step we have a subsequence {xnk} for which {Akxnk} 
is a Cauchy sequence. The diagonal sequence £„ = xnn has the property 
that {Ak£n} is a Cauchy sequence for each fixed k. Then for any m > 1 we 
have 

II A^n^-m — 

A£n\\ 

= \\(Mn+m - Aktn+m) + (Ac&i+m ~ Aktn) + {Ak£n ~ A£n)\\ 

< \\A - Ak\\ Mn+m\\ + \\AkU+m ~ A<£„|| + ||Afc - A\\ \\in\\ 
< lb \\A - Ak\\ + \\Ak^n+m - Ak£n\\ 

where ||£„|| < b for all n. Given e > 0 we can choose and fix p so that 
HA-ApH <e /46 ; then 

\\A£n+m - A£n\\ < e/2 + \\ApZn+rn - Ap£n\\, 

and we can finish the proof by choosing iV so large that the second term 
on the right is less than e/2 for n > N and any m > 1. • 

Thus the set of all compact linear operators from X to Y is a closed 
linear subspace of L(X, Y). 

Above we introduced the set of finite dimensional linear operators; these, 
being continuous, are compact. The importance of this class is given by 
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the following theorem, which states that this class is dense in the set of 
compact linear operators in a Hilbert space. 

Theorem 3.17.6 If A is a compact operator acting in a separable Hilbert 
space, then there is a sequence of finite dimensional continuous linear op
erators {An} having uniform operator limit A. 

Proof. A Hilbert space H has an orthonormal basis {gn}, in terms of 
which any / € H can be represented as 

oo 

k=l 

Since A is a continuous operator we have 

Af = '$2(f,gk)Agk. 
fc=i 

We define An by 

and show that 

By definition 

Anf = ^2(f,9k)Agk 
fe=i 

lim p - , 4 n | | = 0. (3.17.2) 

\\A-An\\= sup \\(A-An)f\\. 

First we show that there exists f£ such that 

| | / * | | < 1 and \\A-An\\ = \\(A-An)f:\\. (3.17.3) 

By definition of the supremum there is a sequence {fk} such that 

| |M| < 1 and lim \\(A - An)fk\\ = \\A - An\\. 
k—>oo 

This bounded sequence in a separable Hilbert space has a weak Cauchy 
subsequence {fkl}, and this subsequence converges weakly to an element f£; 
moreover, by the proof of Lemma 3.15.2 we have ||/*|| < 1. Because A — An 

is compact the sequence {(̂ 4 - An)fkl} converges strongly to (A- An)f^, 
i.e., a subsequence of the convergent sequence {\\(A — An)fk\\} converges 
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to the number ||(^4 - .An)/*|| as k —> oo. So the second relation in (3.17.3) 
also holds. 

But 

(A-An)f: = A( JT (f:,gk)gk) 
\k=n+l J 

so taking the norm of both sides we have, by (3.17.3), 

oo 

| | j 4 - 4 „ | | = | | i tyn | | where tpn= ^ (f*,gk)gk. (3.17.4) 
fc=n+l 

The sequence {<pn} C H converges weakly to zero. Indeed for any / e H 
we can write 

( OO CO \ 

E (fn'9k)gk, ^2(f,gm)gm j 
k=n+\ m = l / 

C oo oo \ 

E (fn,9k)gk, E (f'9m)gm) 
k=n+l m = n + l / 

oo 

= E (/n.5fe)(/,5fe). 
fc=TS+l 

hence 
/ oo \ V 2 / oo \ 1/2 

\(<pnj)\< E K/^rf E i(/>rf 
\ f c = n + l / \ f c = n + l / 

/ oo \ V 2 

< E K/.50I2 | |/*| |->0 a s n - o o 
\ f c = n + l / 

since ||/*|| < 1 and YT=i l(/>3fc)|2 = ll/l|2 < oo by Parseval'sequality (i.e., 
the parenthetical quantity represents the tail of a convergent series). Since 
<pn —^ 0 and A is compact we have 

lim \\A<pn\\=0. 

By (3.17.4) this proves (3.17.2). • 

We will need the following simple theorem. 

Theorem 3.17.7 If A is a compact linear operator acting in a Hilbert 
space, then A* is compact. 
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Proof. We take a sequence {/„} such that / „ —*• /o and show that 
A*fn - • A*f0. We have 

\\A*fn - A*/o||2 = (A*fn - A*f0,A*fn - A*f0) 

= {fn-fo,AA*(fn-f0)) 

<\\fn-fo\\\\AA*(fn-f0)\\ 

<(\\fn\\ + \\M)\\AA*(fn-f0)\\. 

But | | /„| | < M for some constant M, and the product AA* is compact since 
A* is continuous. Hence 

| | A * / n - A * / 0 | | 2 ^ 0 a s n - > o o 

which completes the proof. • 

Sobolev's imbedding theorem states that some imbedding operators 
from a Sobolev space are compact. A simple illustration can serve to clarify 
this idea. Let us consider the mapping under which a continuously differ-
entiable function f(x) (we show this as f(x) € C^(0,l)) is regarded as 
an element of the space C(0,1), the space of functions continuous on [0,1]. 
Although this mapping is an operator, we cannot call it an identity opera
tor since its domain and range are different spaces. Instead, we refer to it 
as the imbedding operator from C^(0,1) to C(0,1). 

Theorem 3.17.8 The imbedding operator from C^(0,1) to C(0,1) is 
compact. 

Proof. We need to check that the image S of the unit ball of the domain is 
a precompact set in C(0,1). By Arzela's theorem we need to show that the 
set of functions S is uniformly bounded and equicontinuous. It is uniformly 
bounded since a function of the unit ball of C^'(0,1) satisfies \f(x)\ < 
1 and thus is inside the unit ball of C(0,1). The Lagrange mean value 
theorem then states that for any x\ < X2 from [0,1] where the function is 
continuously differentiable there exists £ € [a î, £2] such that 

f(x2)-f(x1) = f'(Z)(x2-X1). 

Since | / ' ( 0 I < 1 f° r a n v / € 5, we have 

\f(x2)~ f{xi)\ < | a ; 2 - x i | . 

This implies the equicontinuity of S. n 
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3.18 Closed Operators 

Thus far we have considered the case of a continuous linear operator whose 
domain is the whole space. However, in many circumstances we are forced 
to consider operators whose domains are not the whole space. For example, 
the operator of differentiation d/dx on the space of functions continuous 
on [0,1] does not have the entire space C[0,1] as its domain, since there 
are continuous functions that are nowhere differentiable on [0,1]. But this 
operator, as we shall see below, has some properties that are "better" than 
the properties of a general operator with an arbitrary domain. We shall 
show that it resides in a class of operators that is wider than the class of 
continuous operators, but such that there remains the possibility for us to 
perform some limit passages with it. The class is given by the following 
definition. 

Definition 3.18.1 Let A be a linear operator mapping elements of a 
Banach space X into elements of a Banach space Y. We say that A is 
closed if for any sequence {xn} C D{A) such that xn —> x and Axn —> y as 
n —> oo, it follows that x € D{A) and y = Ax. 

It is evident that A is closed if A is continuous and D(A) = X. There 
are, however, closed operators that are not continuous. An example is the 
derivative operator A = d/dt acting from C(0,1) to C(0,1). The domain 
of A is the subset of C(0,1) consisting of those functions having continuous 
first derivatives on [0,1]. To see that A is closed, we first assume that 

xn{t) —> x(t) as n —» oo 

in the norm of C(0,1), where each x'n(t) is continuous, and that 

Axn(t) = x'n{t) —> y(t) as n —* oo, 

also in the norm of C(0,1). Realizing that convergence in the max norm is 
uniform convergence, we recall a theorem from ordinary calculus: 

Theorem 3.18.1 If fn(t) is continuous for each n and fn(t) —> f(t) 
uniformly on [0,1], then 

(1) f(t) is continuous on [0,1], and 
(2) uniform convergence of the sequence {/£(£)} of derivatives that are con

tinuous on [0,1] implies that f'(t) exists, is continuous on [0,1], and 
thatf'n{t)^f'{t). 
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By this theorem A = d/dx on C(0,1) meets the definition of a closed 
operator. To see that A is not continuous, consider its action on the set of 
functions {tn}. This set is bounded with 

||i"| | = l for each n, 

but its image under A is unbounded with 

d . . 
dtXn{t) | n i n _ 1 | | = n . 

So A does not map every bounded set into a bounded set. 
If fi C K" is compact, then the more general differential operator A 

given by 

A/(x) = J2 cQ(x)DQ /(x), 
\a\<n 

with continuous coefficients ca(x) and acting from C^(fl) to C(Q), is a 
closed operator. 

Definition 3.18.2 Let A be an operator from X to Y. Suppose that an 
operator B, also from X to Y, satisfies the following two conditions: 

(1) D(A) C D(B), and 
(2) B{x) = A{x) for all x e D(A). 

Then B is said to be an extension of A. 

Lemma 3.18.1 A linear operator A acting from a Banach space X to a 
Banach space Y has a closed extension if and only if from the condition 

(*) let {xn} C D(A) be an arbitrary sequence such that xn —» 0 and Axn —> 

y 

it follows that y = 0. 

Proof. Necessity follows from Definition 3.18.1. To prove sufficiency let 
us explicitly construct a closed extension B of A. 

We first define B, then verify its properties. Let D(B) consist of those 
elements x for which there exists {xn} C D{A) such that xn —> x and 
Axn —* y as n —> oo; for each such x, define Bx = ?/. The condition (*) 
ensures that y is uniquely defined by x. Indeed, suppose two sequences 
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{xn} and {zn} in D(A) both converge to x, and Axn —» y while v4z„ —> y'. 
Then 

x n zn > U, A[xn zn) = Axn — Azn • y — y , 

and from (*) it follows that y — y' = 0. 
To see that B is linear, we take two elements x, x in D(B) and any two 

scalars A,/z. By definition of D(B) there are sequences {a;„} and {xn} in 
D(i4) such that 

xn > x: Axn • y, xn • x, s\xn • y, 

and we define Bx = y, Bx = y. But Aa: + \ix € D(.B) because 

Aa:n + fj,xn —> Aa; + /xi, A(Aa:„ + /x5n) = A 4̂a:„ + tiAa:n —> Ay + A"/, 

and we therefore define B(\x + /j,x) = Xy + \xy = ABa: + \iBx. 
Finally, let {un} C D(B) be such that un —> u and £?un —> v. According 

to Definition 3.18.1 we must prove that u £ D{B) and Bu = v. Let us 
construct a sequence {xn} C D(A) that is equivalent to {un}, and then 
verify the desired properties for {xn}. Fix un. By definition of B there 
exists {iVnk} C D(A) such that u;„fc —> u„ and A u ^ —> Bu„ as fc —> oo. 
Hence there exists TV such that for all k > N we have both ||tonfc — un\\ < 
l/n and ||j4wnfc — Bun\\ < l /n . Choose one of the points wnko where 
ko > N, and denote this point xn. Now consider the sequence of points 
{a;n} C D{A). The inequalities ||xn — w„|| < l / n and ^Axn — Su„ | | < l / n 
show that xn —> u and Axn —* v as n —> oo. By definition of B we have 
u € D(B) and Bu = v. D 

It sometimes happens that we can establish boundedness of an operator 
directly on a subspace that is everywhere dense in the space. To establish 
that it is continuous on the whole space, we may employ 

Theorem 3.18.2 Let A be a closed linear operator whose domain is a 
Banach space X and whose range lies in a Banach space Y. Assume there 
is a set M which is dense in X and a positive constant c such that 

\\Ax\\ <c\\x\\ forallxeM. 

Then A is continuous on the whole space X. 

Proof. For any xo € X, we can find {xn} C M such that \\xn — xo\\ < 
l / n for each n. The inequality 

| |Ar fc+m - Axk\\ < c \\xk+m - Zfc|| < c(||xfe+m - a:0|| + ||xfc - ar0||) < 2c/k 
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shows that {Arfc} is a Cauchy sequence in Y. We have Axk —• y for some 
y &Y since Y is a Banach space; since A is closed, AXQ = y. Now we can 
write 

||Ar0 | | = lim ||Arfe|| < lim c||a;fe|| = c||a:o||. 
k—>oo k—*oo 

Since XQ is an arbitrary element of X and c does not depend on XQ, the 
proof is complete. • 

Closed operators can be considered from another viewpoint. We begin 
by noting that if X and Y are Banach spaces over the same scalar field, 
then the Cartesian product space X xY with algebraic operations defined 
by 

(xi,yi) + (2:2,2/2) = {xi +x2,yi +2/2), a(x, y) = (ax, ay), 

and norm defined by 

||(*,y)|| = (Nlx + IMIy)1/2, 

is also a Banach space. 

Definition 3.18.3 Let A be an operator acting from D(A) C X to Y. 
Then the set 

G{A) = {(x, Ax) € X x Y I x e D(A)} 

is called the graph of A. 

Theorem 3.18.3 A linear operator A acting from D(A) C X to Y is 
closed if and only ifG(A) is a closed linear subspace of X x Y. 

Proof. Suppose A is a closed operator. Let (x, y) be a limit point of 
G(A). Then there is a sequence {(xn,Axn)} C G(A) that converges to 
(x, y) in the norm of X x Y. Evidently this implies that as n —> 00 we 
have xn —» x in X and Axn —• y in Y. Because A is closed, x e -D(A) and 
?/ = Ax. Hence (a;, Ax) S G(A) by definition of G(A). 

Conversely, suppose G(A) is closed in X x Y". Let {a;n} C -D(^) be 
such that, as n —• 00, a;„ —• x in X and Aa:„ —> y in Y. The sequence 
{(xn, Axn)} C G(A) converges in the norm of X x Y to (x, y). Since G(A) 
is closed, (x, y) G G(A). By definition of G(A) this means that x e -D(-<4) 
and y = Ar. • 

Theorem 3.18.4 If A is an invertible closed linear operator, then A~l 

is also closed. 
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Proof. We can obtain G(A x) from the graph of G(A) by the simple 
rearrangement (x,Ax) >—> (Ax,x). Hence G{A~l) is closed in Y x X. D 

We can now formulate Banach's closed graph theorem. 

Theorem 3.18.5 Let X and Y be Banach spaces. If A is a closed linear 
operator having D(A) = X, then A is continuous on X. 

See Yosida [Yosida (1965)] for a proof. In applications the following 
simple consequence of the theorem can be used to establish continuity of 
an operator. 

Corollary 3.18.1 Let X and Y be Banach spaces. If a closed linear 
operator A from X to Y is one-to-one and onto, then A-1 is continuous 
on Y. 

Proof. The operator A-1 is closed by Theorem 3.18.4, and is continuous 
by Theorem 3.18.5. • 

3.19 Introduction to Spectral Concepts 

We begin this section by recalling that the equation 

Ax = Ax (3.19.1) 

plays an important role in the theory of an n x n matrix A. Any number A 
that satisfies (3.19.1) for some nonzero vector x is called an eigenvalue of 
A, and x is a corresponding eigenvector. An alternative form for (3.19.1) 
is, of course, 

{A - A/)x = 0 

where / is the n x n identity matrix. To this equation we can relate another, 
inhomogeneous equation which corresponds to most mechanical problems 
involving periodic forced oscillations of a finite number of oscillators: 

(A - XI)x = b. (3.19.2) 

We know that if A is not an eigenvalue of A this equation is solvable for any 
b. The eigenvalues of A correspond to the frequencies of external forces that 
put the system into the resonance state when the amplitude of vibrations 
grows without bound. 
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But equations having the form (3.19.2) also occur outside the realm of 
matrix theory. Equations of the form 

(A - XI)x = b, (3.19.3) 

where A is a more general operator, arise naturally in continuum physics. 
Usually we get an equation of this form when studying the oscillations of 
a medium. Then A is a differential or integral operator acting on the set 
of admissible functions that represent distributions of displacement, strain, 
stress, heat, etc. This operator is linear. Defining properly the set of 
admissible functions x and loading terms b (note that b may represent actual 
mechanical loads in some problems, but may represent sources, say of heat, 
in other problems) we get an operator equation. If b = 0 we then have the 
problem of finding nontrivial solutions to the homogeneous equation. These 
are called eigensolutions. The terminology of matrix theory is retained in 
this case. These eigensolutions, as for a finite system of oscillators, represent 
eigen-oscillations of some elastic bodies or fields. Even when they do not 
represent oscillations of the system, they still participate in the Fourier 
method of separation of variables to solve the problem and, in any case, 
give us an understanding of how the system functions. Note that unlike 
the situation for a matrix equation where we seek solutions in space M.n for 
which all norms are equivalent, the choice of admissible sets for continuum 
problems brings a new situation: with a proper choice of the space of 
solution we can gain or lose eigensolutions. To decide which spaces are 
"correct" spaces we should rely on our understanding of the physics of the 
corresponding processes. 

The simple relation between the existence of solution for an inhomoge-
neous matrix equation and A being or not being an eigenvalue may fail for 
continuum problems. It turns out that there are situations in which A is 
not an eigenvalue of the corresponding operator equation, so there are no 
eigenvectors of the operator A, but we cannot find a solution to (3.19.3) in 
such a way that it depends continuously on changes in b. The collection 
of "trouble spots" for A in the complex plane (including the eigenvalues) is 
known as the spectrum of the operator A. We give a formal definition of 
this concept next, as well as a classification of the points of the spectrum. 

Definition 3.19.1 Let A be a linear operator having domain and range 
in a complex normed space X. For a complex parameter A, denote by A\ 
the operator 

Ax = A - XI 
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where I is the identity operator on X. The resolvent set of A is the set 
p(A) of all A G C for which the range of A\ is dense in X and for which 
A\ has a bounded inverse. For any A G p(A), we call A^1 the resolvent of 
A at A and write 

i?(A;A) = (^ l -A7) - 1 . 

The complement of p(A) in C is a set called the spectrum of A, denoted 
a(,4). 

Any value A G p(^4) is known as a regular value of A Any A G cr(A) is 
called a spectral value of A. The spectrum of any operator A is naturally 
partitioned into three disjoint subsets: 

(1) P,j(A), the point spectrum of A, is the set of all spectral values for 
which the resolvent R(X; A) does not exist. Its elements are called the 
eigenvalues of A. 

(2) Ca(A), the continuous spectrum of A, is the set of all spectral values 
for which R(X; A) exists on a dense subset of X but is not a bounded 
operator. 

(3) Ra(A), the residual spectrum of A, is the set of all spectral values for 
which R(X; A) exists but with a domain that is not dense in X. 

So 

a(A) = Pa(A)uCa(A)uRa{A) 

(we shall see that some of the sets on the right may be empty). The use 
of the term "eigenvalue" for an element A G P<J{A) may be justified as 
follows. We have A G Pa{A) if and only if the linear operator A — XI is not 
one-to-one, which is true if and only if its null space does not consist only 
of the zero vector. In other words, we can have A G P<r(A) if a n d only if 
the equation 

(A - XI)x = 0 

has a nontrivial solution x. Such an element x would be, of course, an 
eigenvector of A corresponding to the eigenvalue A. 

Example 3.19.1 Let X = I1, and let A from X to X be given by 

* - f r !•!-•) 
for x = ( 6 , 6 , 6 , • • •) G e1. Find Pa(A). 
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Solution We have 

(A - A/)x = ( ( \ - \) 6 , (\ - A ) &, (\ ~ A ) &,. 

yl — A/ is not one-to-one if and only if A is such that ^ — A = 0 for some 
k = 1,2,3, Hence 

Example 3.19.2 Show that if A is a bounded linear operator and A is 
an eigenvalue of A, then |A| < \\A\\. 

Solution For some nonzero vector v we have Av = Xv, hence |A| ||u|| = 
||AV||<||A|||H|. 

For a bounded operator we can show an important part of the resolvent 
set immediately. 

Theorem 3.19.1 Let A be a bounded linear operator on a Banach space 
X. All the A e C such that \\A\\ < |A| are points of the resolvent set of 
operator A, that is (A — A / ) - 1 is a bounded linear operator on X. Moreover, 
there holds 

fe=0 

The series on the right is called the Neumann series for A. 

Proof. Thus A is a bounded linear operator on a Banach space X. Let 
us take a value A € C and consider solving the equation 

Ax-Xx = y (3.19.4) 

for x € X when y € X is given. We rewrite this as 

1 1 A x = --y+jAx, 

define the right member as the mapping F(x) = —X~1y + X~1Ax, and check 
to see whether F can be a contraction. We have 

||F(a;i) - F0c2)| | = IAI"1 \\Ax1 - Ax2\\ < \X\~l \\A\\ \\Xl - x2\\, 

hence F is a contraction whenever 

|A |> | |A | | . 



Functional Analysis 289 

Provided this condition is fulfilled we can employ the iteration scheme 

xj+1=--y+jAxj, j = 0,1,2,... 

to solve (3.19.4). Starting with XQ = —y/A, we may generate a sequence of 
iterates: 

1 

Xl = -\V+\Axo = - \ y - # A y 

1 1 A 1 1 * 1 A2 
X2 = —\y+-\Axl = --\y-vAy-vAy 

*» = - T E ^ V 
fc=0 

These iterates converge to the unique solution 

x = - - V —rAky. 

It is therefore clear that the operator given by the absolutely convergent 
series 

i °° 1 
-- V — Ak 

fc=0 

is the inverse of the operator A — XI. We can also check this statement 
explicitly. To see that it is a right inverse, we write 

oo 1 oo -

fc=i fc=i 

= J. 

Verification that it is a left inverse is similar. • 
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By this theorem the set 

{ A e C : | A | > | | A | | } 

does not contain any points of the spectrum of A, which is another solution 
of Example 3.19.2. 

Certain kinds of operators have simple and convenient spectral prop
erties. In our future work we shall need the results given in the following 
lemma: 

Lemma 3.19.1 Let A be a self-adjoint continuous linear operator A act
ing in a Hilbert space H. Then 

(i) the functional (Ax, x) is real valued; 
(ii) the eigenvalues of A are real; 

(Hi) if x\,X2 are two eigenvectors corresponding to distinct eigenvalues 
Ai, A2, then (x\,X2) = 0 and (Ax\,X2) = 0. 

Proof. To prove item (i) we merely write 

(Ax,x) = (x,Ax) = (Ax,x). 

If Ax = Xx then (Ax,x) — X(x,x), hence A is real. This proves (ii). Now 
suppose Ax\ = Ai^i and AX2 — A2£2 where A2 ^ Ai. Forming inner 
products with X2 and x\ respectively, we obtain 

Ai(x1;a;2) = {Axi,x2), X2{x1,x2) = (xi,Ax2) = (Axi,x2)\ 

subtracting these we find (A2 — Ai)(zi,2:2) = 0, hence ( z i , ^ ) = 0. Re
turning to Ai(:ri,a:2) = (Axi,X2), we have (Ax\,X2) = 0. This proves 
(iii). • 

3.20 The Fredholm Theory in Hilbert Spaces 

It is a quite common problem to find a solution x of the following algebraic 
problem in W1: 

y l x - A x = b, (3.20.1) 

where A is an n x n matrix. When b = 0, this is an eigenvalue problem for 
the matrix A. For this equation it is well known that if A is not an eigenvalue 
of A, then the equation is solvable for any b. There are no more than n 
eigenvalues of A. If A is an eigenvalue of A, then the problem is solvable 
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only for some set of values b that are orthogonal to all the eigenvectors of 
the conjugate-transpose matrix A* that correspond to A, an eigenvalue of 
A*. So to an eigenvalue Ao of A there corresponds an eigenvalue Ao of A*; 
moreover, the dimensions of the subspaces of the corresponding eigenvectors 
of A and A* are the same. Furthermore, the situation for the solvability of 
the dual equation 

A*x - Ax = b* 

is symmetric to the problem involving the operator A. 
This was extended by I. Fredholm to the theory of integral equations 

that are now called Fredholm equations of the second kind: 

Au(x) - / K(x, y)u(y) dny = / (x ) . 
Jn 

When the operator is compact this equation inherits almost all the qualita
tive features possessed by equation (3.20.1), except the number of possible 
eigenvalues: it may be countable, but the only possible point of accumula
tion is zero. Riesz [Riesz (1918)] and Schauder [Schauder (1930)] extended 
the Fredholm theory to Banach spaces. 

We present a particular case of this theory in a Hilbert space H, which 
is enough to consider the problem of eigenfrequencies of bounded elastic 
objects like membranes, plates, shells, or elastic bodies. We recall that 
the Fredholm integral operator is compact in I?. Thus we consider the 
following equation in H: 

Ax — Xx = b, 

with given b e H. We suppose A to be a compact linear operator in H. 
Let us introduce the necessary notation. A* is the adjoint to A, satisfying 
the equality 

(Ax,y) = (x,A*y). 

Correspondingly we introduce the equation 

A*x-Xx = b*. 

We denote by N(X) the subspace of H spanned by the eigenvectors of A 
corresponding to a given eigenvalue A. With the exception of the zero 
element, every member of this subspace is an eigenvector of A. Indeed any 
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finite linear combination of xi,... ,xm S N(X) also belongs to N(\): 

( m \ m m / m \ 

^ UiXi J = ^ a* Ar* = ^ a^Aa:, = A I ^ a ^ i J . 
i=l / i=l i=l \ i = l / 

Note that N(X) contains all the eigenvectors corresponding to A, along with 
the zero element of H.6 We denote by M(A) the orthogonal complement 
of N(X) in H. The corresponding sets for A* are denoted by JV*(A) and 
M*(A). Let us formulate the facts of the Fredholm-Riesz-Schauder theory 
as 
Theorem 3.20.1 Let A be a compact linear operator in a Hilbert space 
H. Then 
(1) the spectrum of A consists only of eigenvalues, and thus the remaining 

points of the complex plane are all regular points of A; 
(2) to any nonzero eigenvalue X of A there corresponds a finite number of 

linearly independent eigenvectors (i.e., N(\) is finite dimensional); 
(3) the only possible point of accumulation of the eigenvalues of A in the 

complex plane is zero; 
(4) if A is an eigenvalue of A then A is an eigenvalue of A* and vice versa, 

and the equation 

Ax — Xx = b 

is solvable if and only ifb is orthogonal to the set N*(X); 
(5) the dimensions of N(X) and N*(X) are equal; 
(6) A* is a compact linear operator, and thus 

(6a) its spectrum consists only of eigenvalues with zero as the only pos
sible point of accumulation of the eigenvalues; 

(6b) to each eigenvalue there corresponds a space of eigenvectors N*(X) 
that is finite dimensional; 

(6c) the equation 

A*x -Xx = b* 

is solvable if and only if b* is orthogonal to the subspace N(X). 

The proof will be formulated as a collection of lemmas. We begin by 
proving statement (2). 

6 An alternative definition of N(\) is as the null space of the operator A — XI, i.e., as 
the set of all x G H that satisfy the equation (A — XI)x = 0. 
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Lemma 3.20.1 If X is any nonzero eigenvalue of A, then N(X) is a 
closed, finite dimensional subspace of H. 

Proof. To see that N(X) is closed we use the continuity of A. Let xr 

be a limit point of N(X). There is a sequence {xn} C N(X) such that 
xn —> £* in H. For each n we have Axn = Xxn, and passage to the limit 
as n —> oo gives Ax* = Aa;*. Hence a;* € N(X). We next show that N(X) 
is finite dimensional. We recall Theorem 3.8.4 which states that any closed 
and bounded set is compact only in a finite dimensional Hilbert space. So 
let S be an arbitrary closed and bounded subset of N(X), and choose any 
sequence {xk} C S. By compactness of A and the equality Xk = X~1Axk, 
we see that {xk} has a Cauchy subsequence. Hence S is precompact. But 
S is also a closed subset of a complete space H, hence it contains the limits 
of its Cauchy sequences. We conclude that S is compact, as desired. • 

Remark 3.20.1 We do not include into consideration the eigenvalue A = 
0, because it corresponds to the infinite eigenfrequency of a body. The 
properties of this eigenvalue differ from the properties of all the rest of the 
eigenvalues. Take, for example, a one dimensional operator A of the form 
Ax = F(X)XQ where xo is fixed and F(x) is a continuous linear functional. 
Then by the equation Ax = Ax, the eigenvalues corresponding to A = 0 
are those elements x that satisfy F(x)xo = 0 . By the Riesz representation 
theorem we can express F(x) = (x,f) for some fixed / £ H, hence any 
vector x that is orthogonal to / belongs to N(0). As an even stronger 
example we may take A to be the zero operator, which is of course compact. 
In this case the equation Ax = Aa; becomes Aa; = 0, and with A = 0 this 
holds for any x G H. Here then we have N(Q) — H. So A = 0 was by 
necessity excluded from statement (2). In statement (3) we see that A = 0 
is the only possible accumulation point for the set of all eigenvalues. 

Statement (3) will be proved as Lemma 3.20.3. In preparation for this 
we introduce some notation and establish an auxiliary result. Let A j , . . . , Afc 
be eigenvalues of A. We denote by 

N(Xl)+...+N(Xk) 

the space spanned by the union of the eigenvectors that generate the indi
vidual eigenspaces iV(Ai), . . . , N(Xk). Our use of the notation for direct sum 
is justified by the next result which shows, in particular, that eigenspaces 
corresponding to distinct eigenvalues can intersect only in the zero vector. 
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Lemma 3.20.2 Assume Si = {x/ '>} is a linearly indepen
dent system of elements in N(Xi) for each i = 1 , . . . , k. Then the union 
U^=15, is linearly independent. If Si is a basis of N(\i) for each i, then 
Uf=15j is a basis of N(\i)-\ +7V(Afc). 

Proof. The proof is by induction. We want to show that under the hy
pothesis of the lemma uf=15i is linearly independent in iV(Ai)-i \-N(\k) 
for each positive integer k. For k = 1 the statement holds trivially. Suppose 
it holds for k = n. Let us take the eigenvalue-eigenvector pairings 

(^i,x{
p
l)), p = l,...,ni, i=l,...,n, 

and renumber everything so that these same pairings are denoted as 
(Xj, Xj), j = 1 , . . . , r. By assumption then, 

r 

Y^ ajXj = 0 => ctj = 0 for j = 1 , . . . , r. (3.20.2) 
3 = 1 

We must show that the statement holds for k = n + 1. Appending Sn+i to 
U"=15i, we now assume that 

r+s 

^ C j x j = 0 (3.20.3) 
j=i 

and attempt to draw a conclusion regarding the Cj (here s is new notation 
for the number of elements in Sn+i)- An application of A to both sides 
allows us to write 

r+s 
i 

A71+I 

1 ' ^ o 

and upon subtraction from the previous equation we obtain 

We now have Cj = 0 for j = 1 , . . . , r by (3.20.2). Substitution into (3.20.3) 
gives 

r+s 

/ j cjxj = 0 ; 
.7=7-+1 
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but the eigenvectors participating in this sum are all associated with An+i 
and are linearly independent by assumption. Hence Cj = 0 for j = r + 
l,...,r + s. 

The second statement of the lemma follows from the fact that the di
mension of the direct sum iV(Ai)-i i-iV(Afc) is less than or equal to the 
sum of the dimensions of the constituent eigenspaces N(Xi). Since we do 
have ni H hrit linearly independent vectors in the direct sum, we have 
found a basis. • 

Lemma 3.20.3 The only possible point of accumulation of the eigenval
ues of A in the complex plane is A = 0. 

Proof. Suppose Ao is a limit point of the set of eigenvalues of A, and 
|Ao| > 0. There is a sequence {A„} of distinct eigenvalues of A such that 
An —> Ao. For each A„ take an eigenvector xn, and denote by Hn the 
subspace spanned by {x\,... ,xn}. Thus Hn C Hn+i for each n. Let y\ = 
x\l |jcci||- Successively, we can construct another sequence {yn}, n > 1, as 
follows. By Lemma 3.20.2 we have Hn ^ ifn+i, so for each n there exists 
yn+i € Hn+\ such that ||j/n+i|| = 1 and yn+\ is orthogonal to Hn. Indeed, 
we use the orthogonal decomposition theorem to decompose Hn+\ into Hn 

and another nonempty subspace orthogonal to Hn, from which we choose 
a normalized element. Now consider the sequence {j/n/An}; because it is 
bounded in H, its image {A(yn/Xn)} contains a Cauchy subsequence. We 
begin to seek a contradiction to this last statement by writing 

A ( - r 1 ^ ) - A ( -p - ) = yn+m - ( yn+m - Ayn+m + —Ayn ) 
\ An+m J \An J \ An+m ' *n J 

(3.20.4) 
for m > 1. On the right the first term yn+m belongs to Hn+m; the second 
(parenthetical) term belongs to Hn+m-i because we can write yn+m — 
Z)fc=r °kxk and have 

„„+m_ i A^m 
An+m 

along with the fact that X^Ayn e Hn C Hn+m-i. Because the two terms 

n+m 1 /n+m \ 

= Y^ CkXk ~ T A ^2 °kxk 
fc=l n+m \fc=l / 

n+m—1 / \ \ 

= 5 2 cfc ( 1 - T I xk € if n+m-1 
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on the right side of (3.20.4) are orthogonal the Pythagorean theorem yields 

Afy^+m\ A 

\Xn+m J 

= WVn+mf + 

(t) 
Vn+m ~ 

z 

1 I 
• , Ayn-\.m + Ayn 

> 1 , 

for any n and m > 1, so {A(yn/Xn)} cannot contain a Cauchy sequence.• 

Let us proceed to 

Lemma 3.20.4 Let X be fixed. There are positive constants mi and mi 
such that 

mi ||a;|| < \\Ax - Xx\\ < m2 \\x\\ (3.20.5) 

for all x G M(A). 

Proof. We have 

IIAc-AxH^HAirlH-IIAxll^dlAII + lADIIxll, 

thus establishing the inequality on the right. Proceeding to the inequality 
on the left, suppose it does not hold. Then there is a sequence {xn} c M(A) 
such that ||z„|| = 1 and \\Axn — Xxn\\ —* 0 as n —• oo. Because A is 
compact, {Axn} contains a Cauchy subsequence. By the equality 

A£n = Axn yAxn Xxn) 

{xn} also contains a Cauchy subsequence which we again denote as {xn}. 
By completeness of M(A) we have xn —• a;o for some xo € M(A). Continuity 
of A gives Axn —» AXQ, and from 

0 = lim \\Axn - Xxn\\ = \\Ax0 - Xx0\\ 
n—+oo 

we see that Ax$ = Axo- This means that XQ € N{X). Thus we have 
Hioll = I, so 6 N{X), and Xo € M(A); this is impossible since the spaces 
iV(A) and M(X) intersect only in the zero element. • 

Lemma 3.20.4 shows that on M(A) we can impose a norm 

II^Hj = 11Ax - Ax|| 

which is equivalent to the norm of H. The associated inner product is given 
by 

(x, V)i = (Ax - ^x, Ay - Ay). 
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Similarly, on M*(X) the norm \\A*x — Ax|| is equivalent to the norm of H. 

Lemma 3.20.5 The equation 

Ax-\x = b (3.20.6) 

is solvable if and only if b is orthogonal to every vector in TV*(A); equiva-
lently, 

R(A-XI)=M*(X). (3.20.7) 

Similarly, the equation 

A*x -Xx = b* (3.20.8) 

is solvable if and only if b* is orthogonal to every vector in N(X); equiva
lent^, 

R{A* - XI) = M(A). (3.20.9) 

Proof. Suppose (3.20.6) is solvable with solution XQ. If y G TV*(A) is 
arbitrary, then 

{b, y) = (Ax0 - XXQ, y) = (x0, A*y - Xy) = (x0,0) = 0. 

Conversely, suppose b G M*(X). The functional (x,b) is linear and contin
uous on H (and so on M*(A)), hence by the Riesz representation theorem 
can be represented on M*(X) using (•, -)i as 

(x, b) = (x, 6)i = (A*x - Xx, A*b - Xb) 

for some b e M*(A). This equality, being valid for x e M*(A), holds for all 
x € H too; indeed bearing x = x\ + X2, x\ e TV*(A), x% £ M*(A), we have 

A*x -Xx = A*xi - Xxi + A*x2 - Xx2 = A*x2 - Xx2 

and so, for all x G H, 

(A*x - Xx, A*b - Xb) = (A*x2 - Xx2, A*b - Xb) = (x2,6)i = (x2,b) = (x, b) 

since (xi, b) = 0. Denoting A*b — Xb by g we have 

{A*x — Xx, g) = (x, Ag - Xg) = (x, b) for all x G H, 

hence Ag — Xg = b and g satisfies (3.20.6). The rest of the lemma is proved 
analogously. • 
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By this lemma we have partially addressed part (4) of Theorem 3.20.1. 

Lemma 3.20.6 If Nn is the null space of {A — XI)n, then 

(i) Nn is a finite dimensional subspace of H; 
(ii) Nn C JVn+i for all n = 1, 2 , . . .; 

(Hi) there exists k such that Nn = Nk for all n > k. 

Proof. 

(i) Writing (A - \I)nx = 0 as 

{XnI-n\n-1A+---)x = 0, 

the sum of the terms beginning with the second is a compact operator 
(—B) so denoting A™ = 7 we get an eigenvalue problem (B — ^I)x = 0 
with compact B and so Nn is finite dimensional, 

(ii) If (A - \I)nx = 0, then (A - XI)n+lx = 0. 
(iii) First we show that if Nk+i = Nk for some fc then Nk+m = Nk for 

m = 1,2,3, Consider the case m = 2. By part (ii) we know that 
Nk C Nk+2- Conversely 

x0 G Nk+2 ==» 0 = (A - XI)k+2x0 = (A - XI)k+1{(A - XI)x0) 

= > (A - XI)x0 G Nfc+i = Nk 

=>• (A-XI)k+1xo = 0 

=> x0 G Â fc+i = Nk, 

so iVfc+2 C Nk- Hence Nk+2 = Nk- Now we have -/V^+i = Nk+2, and 
so by the previous argument we get Nk+i = Nk+3, hence Nk+3 = V̂fc, 
and so on. 
Now suppose there is no k such that Nk = Nk+i- Then there is a 
sequence {xn} such that xn G Nn, \\xn\\ = 1, and xn is orthogonal 
to Nn-i- Since A is compact the sequence {Ax„} must contain a 
convergent subsequence. But 

•AXn+m /iXn = AXn+m ~r yJ\Xn+rn AXn_)_rn J\XnJ 

where on the right the first term belongs to Nn+m and the second 
(parenthetical) term belongs to Nn+m-i. (To see the latter note that 
Axn G iVn since 

{A - XI)nAxn = A{A - XI)nxn = 0, 



Functional Analysis 299 

and (A - \I)n+m-l(Axn+m - Xxn+m) = (A - XI)n+mxn+m = 0.) By 
orthogonality of these two terms we have 

II^T-^n+m — -A^nll = ||AiEn-|-m | | + | | i 4a : n + m — Xxn-\-m — Axn\\ > |A| . 

Since A ^ O w e have a contradiction. 

Lemma 3.20.7 We have R(A - XI) = H if and only if N(X) = {0}. 

Proof. Let R(A - XI) = H and suppose N(X) ^ {0}. Take a nonzero 
XQ € N(X). Since R(A — XI) = H we can solve successively the equations 
in the following infinite system: 

(A - XI)xi = x0; (A - XI)x2 = xi; ••• (A - XI)xn+i = xn; ••• 

The sequence of solutions {xn} has the property that 

(A - XI)nxn = s 0 ^ 0 but (A - AJ)"+ 1xn = (A - XI)x0 = 0. 

In the terminology of Lemma 3.20.6, these imply that xn ^ Nn but xn G 
iVn+i. So there is no finite k such that Nk+i = Nk, and this contradicts 
part (iii) of Lemma 3.20.6. 

Conversely let N(X) = {0}. Then M(A) = H hence by equation (3.20.9) 
we have R(A* — XI) = H. By the proof of the converse given above, 
N*{X) — {0} and thus M*(X) = H. The proof is completed by reference to 
(3.20.7). • 

We can now establish part (1) of Theorem 3.20.1: 

Lemma 3.20.8 The spectrum of a compact linear operator A consists 
only of eigenvalues. 

Proof. Suppose A is not an eigenvalue of A. Then A (̂A) contains only 
the zero vector, hence M(X) = H and (3.20.5) applies for all x € H. This 
means, in conjunction with Theorem 3.11.4, that the operator (A — A / ) - 1 

is bounded on the range of A — XI, which is H by Lemma 3.20.7. Hence A 
is a regular point of the spectrum of A. • 

We continue to part (4) of Theorem 3.20.1: 

Lemma 3.20.9 If X is an eigenvalue of A, then X is an eigenvalue of 
A*. 

Proof. Suppose A is an eigenvalue of A but A is not an eigenvalue of A*. 
Then AT* (A) = {0} and thus M*(X) = H. By equation (3.20.7) we have 
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R(A - XI) = H hence N(X) = {0} by Lemma 3.20.7. This is impossible 
since an eigenvalue must correspond to at least one eigenvector. • 

Finally, part (5) of Theorem 3.20.1 is established as 

Lemma 3.20.10 The spaces N(X) and N*(X) have the same dimension. 

Proof. Let the dimensions of N(X) and TV* (A) be n and m, respectively, 
and suppose that n < m. Choose orthonormal bases {x\,... ,xn} and 
{yi, • • • i Vm} of N(X) and N*(X), respectively. Let us introduce an auxiliary 
operator Q by 

n 

Qx = (A- XI)x + ^ ( x , xk)yk = {C- XI)x, 
fe=i 

where C is a compact linear operator as the sum of the compact operator 
A and a finite dimensional operator. 

First we show that the null space of Q cannot contain nonzero elements. 
Indeed if QXQ = 0 then 

71 

(A - A7)a;o + ^{xQ,xk)yk = 0. 
fc=i 

Because R(A - XI) = M*(X) and M*(X) is orthogonal to N*(X), the terms 
(A — XI)xo s M*(X) and Yl^i^o^^Vk € N*(X) must separately equal 
zero; furthermore, since {yj.} is a basis we have (zo; xk) = 0 for k = 1 , . . . , n. 
From (A — A/)a:o = 0 it follows that xo G N(X); because XQ is orthogonal 
to all basis elements of N(X), we have aio = 0. 

By Lemma 3.20.7 we have R(Q) = H and thus the equation Qx = yn+\ 
has a solution XQ. But 

i = {yn+i,yn+i) 

= (yn+i,Qxo) 

= (yn+i,{A- XI)x0) +• ( yn+i,Y^(x0ixk)yk J 

= ({A* -XI)yn+1,x0) 

= 0, 

a contradiction. Hence n > m. But A is adjoint to A* and by the proof 
above we have m > n, so m = n. • 

The proof of Theorem 3.20.1 is now complete. 
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3.21 Exercises 

3.1 Show that a set in a metric space is closed if and only if it contains the 
limits of all its convergent sequences. That is, S is closed in X iff for any sequence 
{xn} C S such that x„ —* x in X, we have x e S. 

3.2 Show that the following sets are closed in any metric space X: (a) any 
closed ball, (b) the empty set 0, (c) X itself, (d) the intersection of any number 
of closed sets, (e) the union of any finite number of closed sets. 

3.3 Suppose a complete metric space X contains a sequence of closed balls 
{B(xn,r„)}'^L1 such that B(xn+i,rn+i) Q B(xn,rn) for each n, and such that 
the radii rn —» 0. Show that there is a unique point x € X such that x e 

rr=1£(wn). 
3.4 Verify that if U is a closed linear subspace of a normed space X, then X/U 

is a normed linear space under the norm ||-| |x ,v given by 

\\x + U\\x/u= inf \\x + u\\x. 

Prove that if U is a closed subspace of a Banach space X, then X/U is also a 
Banach space. 

3.5 Let M be a closed subspace of a separable normed space X. Show that 
X/M is separable. 

3.6 Let A be a continuous linear operator from X to Y, where X and Y are 
Banach spaces. Let M be a closed subspace of X that lies within the kernel of A 
(i.e., if x £ M then Ax = 0). Show that A induces an operator from X/M to Y 
that is also continuous. 

3.7 Let A be a compact linear operator acting in a Banach space X, and let 
M be a closed subspace of X that lies within the kernel of A. Demonstrate that 
A induces a compact linear operator from X/M to X. 

3.8 (a) Show that £2 is not finite dimensional, (b) The space £°° of uniformly 
bounded sequences is the set of all x having ||5c||00 < oo where 

HXIL =sup|a:fc|. 

Show that we may regard ||"Hco ^ a limiting case of ||-|| as p —* oo. (c) Show 
that if p < q, then ||x|| < ||x|| . Note that this represents an imbedding theorem, 
(d) Show that t1 C P C f C t°° whenever q > p > 1. (e) Extend this string of 
inclusions to 

^ C f a ' C c o C c C T , l<P<q-

(f) Prove that for any p € [1, oo], the normed space £p is a Banach space, (g) Show 
that the spaces £p, 1 < p < oo, are separable, (h) Show that (°° is not separable, 
(i) Show that Co is separable. 
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3.9 The distance function d{x,y) = \x3 — y3\ is imposed on the set of all real 
numbers R to form a metric space. Verify the metric axioms for d(x,y). Show 
that the resulting space is complete. 

3.10 Show that if A is a bounded linear operator then ||yl|| is given by the 
following alternative expressions: 

P | | = sup ||Ar|| = sup J ! M . 
II*II=I \\x\\?o \m\ 

Note that we also have 

| |A | |= sup \\Ax\\ = sup \\Ax\\. 
\\x\\<l \\x\\<l 

3.11 Prove that a system of vectors in a Hilbert space is linearly independent 
if and only if its Gram determinant does not vanish. 

3.12 Show that convergence \\An — A\\ —> 0 in operator norm, that is in 
L(X, Y) where X is normed and Y is a Banach space, implies uniform convergence 
Anx —* Ax on any bounded subset S C D(A). 

3.13 Let {gn} be an orthonormal sequence in a Hilbert space H, and let {c„} G 
£ . Show that the converges in H. 

3.14 Derive the differentiation formula 

>,,„,«,,-(M2,»W) + („(«,,^)). 

3.15 Show that if {xn} converges weakly to a; in a Hilbert space H, then 

Hxll < lim inf ||a;„||. 

3.16 An operator A from a normed space V to a normed space W is said to be 
densely defined if D(A) is dense in V. Assume W is a Banach space, and show 
that if A is bounded, linear, and densely defined, then A has a unique bounded 
linear extension to V. Also show that ||-Ae|| = ||A|| where Ae is the extension of 
A. 

3.17 Show that in a finite dimensional space weak convergence implies strong 
convergence. 

3.18 Suppose that A and its inverse are both bounded linear operators defined 
on a normed space X. The condition number of A is defined by cond(j4) = 
\\A\\ \\A~1\\. (a) Show that cond(^4) > 1. (b) Consider the operator equation 
Ax = y. Given y, let x be an approximate solution; denote the "error" by 
£ = x — x and the "discrepancy" by r = y — Ax. Show that 

1 'Hi<M<cond(A)M 
cond(A) ||y|| - ||x|| - ~ v " ' M ' 
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3.19 Let T from X to X be a compact operator on an infinite dimensional 
normed space X. Show that if T has an inverse defined on all of X, then this 
inverse cannot be bounded. 

3.20 (a) Show that every metric space isometry is continuous and one-to-one. 
(b) Prove that a linear operator A: X —> Y between normed spaces is an isometry 
if and only if \\Ax\\ = ||x|| for all x G X. (Notes: (1) We have \\A\\ = 1 if X ^ {0}. 
(2) If A is also an isomorphism between the linear spaces X and Y, then A is 
called an isometric isomorphism.) 

3.21 Let {gk} be an orthonormal system in a Hilbert space H. Show that if 
Parseval's equality 

£K/ ,<?* ) I 2 = II/II2 

holds for all / G H, then {gk} is a basis of H. 

3.22 Show that the operator d/dx is bounded from C'^(—oo, oo) to C(—oo,oo). 

3.23 Show that the set of all functions f(x) bounded on [0,1] and equipped 
with the norm 

| | / ( x ) | | = sup | / (x ) | 
iG[0,l] 

is not separable. 

3.24 Show that if X is a normed space and Y is a Banach space then L(X, Y) 
is a Banach space. 

3.25 Assume that X and Y are Banach spaces, A € L(X, Y) is continuously 
invertible, and B G L(X,Y) is such that | |B| | < | | i 4 - 1 | | _ 1 . Then A + B has an 
inverse (A + B)~l G L(Y,X) and 

IKA + sr^l^diA-1!!-1-^!)-1. 

3.26 Verify the condition stated for equality to hold in (3.9.1). 

3.27 A subset S of a normed space X is said to be open if its complement 
X \ S is a closed set. (a) Show that S is open if and only if every point of 5 is 
the center of an open ball contained entirely within 5. Hence this statement is 
an equivalent definition of an open set. (b) Show that any open ball is an open 
set. (c) Show that an operator / : X —> Y is continuous if and only if the inverse 
image of every open set in Y is open in X. 

3.28 Give an example of a function that is discontinuous everywhere on its 
domain of definition. 

3.29 (a) Show that if the condition 

1/2 

./o Jo 
\k(s, t)\ dsdt I < oo 
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holds, then the Fredholm integral operator A defined by 

Au= k(s,t)u(t)dt 
Jo 

is a continuous operator on L2(0,1). (b) Calculate the norm of the forward shift 
operator S on £2, denned by 

Sx = S(xi,x2,x3,...) = (0,a;i,X2, •. •)• 

3.30 Consider the operator 

(Ax)(t) = I x2(s)ds 
Jo 

acting in C(0,1). Find a closed ball, centered at the origin, on which A is a 
contraction. 

3.31 Consider the subspace S of £°° that consists of all sequences x = (£i) 
having at most finite numbers of nonzero components. Show that S is not a 
Banach space. 

3.32 Let A be a bounded linear operator on a Banach space X. Show that if 
\\A\\ < 1 then 

3.33 Show that if X and Y are Banach spaces, then so is the product space 
X x Y under the norm 

\\(x,y)\\ = max{ | |x | | x , | | j / | | y } . 

3.34 Show that if xn —> x then yn = ^ Y17=i Xi ~* x-

3.35 We have observed that equivalent norms have the same convergence prop
erties. Prove the converse of this statement. 

3.36 Show that if { i „} is a Cauchy sequence in a normed space, then the 
sequence of norms {||zn||} converges. (Note that this implies that every Cauchy 
sequence is bounded.) 

3.37 Show that if a metric space X has a dense subspace that is separable, 
then X is also separable. 

3.38 Show that a normed space is complete if and only if every absolutely 
convergent series converges to an element of the space. 

3.39 Show that the operator A acting in £2 given by 

A x = ( 2 - 1 x 1 , 2 " 2 a ; 2 , 2 _ 3 x 3 , . ^ ) 

is compact. 
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3.40 Show that the number A = 0 belongs to the residual spectrum of the 
forward-shift operator 

J 4 X = A(X1,X2, • • .) = (0,Xl,X2, • • •) 

defined on £2. 

3.41 A sequence of infinite dimensional vectors {x/t} is defined as follows: 

xfc = ( l , . . . , l , 0 ,0 , . . . ) , k = 1 ,2 ,3 , . . . . 

first k 
positions 

Show that {xfc} is not weakly convergent in £2. 

3.42 Prove that the sequence {sin kx) is weakly convergent to zero in L2(0,7r). 
Then show that it contains no weakly convergent subsequence (and therefore is 
not weakly compact) in M /1 '2(0, TT). 

3.43 Use the Holder inequality to place a bound on the norm of the imbedding 
operator from LP(Q) into Lq(Q), p > q. Assume f2 is a compact domain in Mn. 

3.44 Show that if A is a compact linear operator acting in a Hilbert space H, 
and {xn} is an orthonormal sequence in H, then Axn —» 0 as n —> oo. 

3.45 Let n be a compact set in Rn . Demonstrate that the imbedding 

c(n)(n)<->c(n) 

is continuous and compact for n > 1. 

3.46 Suppose a and 6 are finite. Let Pn be the space consisting of all polyno
mials on [a, b] having order up to n, supplied with the norm of C(a, b). Describe 
the space that results when we apply the completion theorem to P„. 

3.47 Show that weak convergence is equivalent to strong convergence in a finite 
dimensional Hilbert space. 

3.48 Use the orthogonal decomposition theorem to show that a closed subspace 
of a Hilbert space is weakly closed. 

3.49 Let S and T be subsets of a metric space. Show that (a) if S is closed 
and T is open, then 5 \ T is closed, and (b) if S is open and T is closed, then 
S \ T is open. 

3.50 Show that if a system is complete in a set 5 that is dense in a Hilbert 
space H, then it is complete in H. 

3.51 A function / satisfies a Lipschitz condition with constant L if it satisfies 
the inequality | / (x) — / ( y ) | < L|x — y|. Let S be a uniformly bounded collection 
of functions given on a compact set fi C Kn and satisfying a Lipschitz condition 
on Q with the same constant L. Show that S is precompact in C(Q). 
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3.52 Let A be a closed linear operator from a normed space X to a normed 
space Y. Show that A maps compact sets into closed sets. 

3.53 Derive inequality (3.10.8). 



Chapter 4 

Some Applications in Mechanics 

In Chapter 1 we studied the tools of the calculus of variations. As a rule, 
we assumed each corresponding variational problem had a solution. In the 
same chapter we mentioned the Perron paradox, which demonstrated how 
careful one should be in using the assumption of existence of some object 
when studying its properties. Unfortunately a study of the problems of 
the calculus of variations from the viewpoint of solvability is difficult, even 
for those problems that seem to be well posed. For example, in nonlinear 
elasticity for bodies under dead external load, the existence of a minimizer 
of total potential energy in general is not shown. Fortunately there is a 
class of variational problems that corresponds to linear boundary value 
problems for which the problem of existence is solved completely. We shall 
use mechanical terminology for these problems; in fact, however, some are 
quite general and can describe objects from fields such as electrodynamics 
and biology. 

4.1 Some Problems of Mechanics from the Viewpoint of the 
Calculus of Variations; the Virtual Work Principle 

We have considered the problem of equilibrium of a membrane as a problem 
of the calculus of variations. Historically, the membrane was first investi
gated through the formulation of Poisson's equation 

-Au(x,y) = f(x,y) (4.1.1) 

on a 2-D bounded domain fi. If the edge dQ of a membrane is fixed (Fig
ure 3.3) in a form described by a given function a(s), then the boundary 
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condition 

u\9n = a(s) (4.1.2) 

can be used to supplement Poisson's equation and formulate a boundary 
value problem. Using this, we can derive the functional of total potential 
energy whose minimum points are given by (4.1.1)-(4.1.2). Let us examine 
one way in which this can be accomplished. First we take a test function 
that is infinitely differentiable on fi and zero in some neighborhood of d£l. 
In what follows we shall consider only simple domains (including most that 
would be encountered in applications). Let the domain be bounded and 
possess a piecewise smooth boundary. We shall denote the above set of test 
functions by V. Let us multiply both sides of (4.1.1) by f(x,y) 6 V and 
integrate this over f2: 

- / Au(x,y)ip{x,y)dxdy = / f(x,y)(p{x,y)dxdy. (4.1.3) 
JQ Jn 

Integration by parts on the left gives 

since tp(x,y) = 0 for (x,y) on dCl. If we wish to consider <p(x,y) in (4.1.4) 
as a variation of the solution u(x,y), then it is easily seen that the integral 
on the left is the first variation of the integral 

dx dy; 

we met this integral in Chapter 3 when introducing energy spaces, and 
called it the internal energy of the membrane due to deformation. The 
integral on the right in (4.1.4) is linear in <p and thus can be considered as 
the first variation of the functional 

/ f(x,y)u(x,y)dxdy, 

which is the work of external forces on the displacement field u(x, y). Thus 
we can regard (4.1.4) as a statement of the fact that the first variation of 
the functional 
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is zero. We have met this functional in Chapter 1; it is the expression for 
the total energy of the membrane: that is, the sum of the internal energy 
and the potential energy due to the work of external forces. We have shown 
that an extremal of this functional describes the equilibrium state of the 
membrane. Lagrange's theorem of classical mechanics states that when 
the total potential energy of a system of particles takes the minimal value 
it corresponds to a stable state of equilibrium of the system. Of course, 
the membrane does not obey the theorems of classical mechanics: it is an 
object of a different nature. However, Lagrange's theorem is extended to 
this case. 

We have considered a membrane with a clamped edge. We may also 
consider other boundary conditions known in membrane theory, for example 
the Neumann condition 

du 
dn 

= g(s). (4.1.5) 
an 

On the left we have the derivative in the outward normal direction, and 
on the right we have a given function. Let us repeat the steps leading to 
(4.1.4). This time, however, we need not take <p £ T>; we suppose only that 
it is sufficiently smooth. Equation (4.1.3) is valid now, but integration by 
parts on the left, by Green's formulae, brings us an additional term: 

By (4.1.5) we have 

(4.1.6) 

Here we write ip(s) to denote the values of <p(x, y) on 80,. The last integral 
on the right side of (4.1.6) looks like the work of the force g(s) acting 
through a displacement ip on the edge of the membrane, so the meaning of 
the Neumann condition is that we define a force distribution g(s) acting on 
the edge. 

Note that in this problem statement we neglect inertia; we think of 
the membrane as a body having zero mass. If external forces that are 
not self-balanced act on a body free from geometrical restrictions, then 
mechanics states that the problem of equilibrium cannot be solvable: the 
body should be moved as a whole and, having zero mass, it should have 
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infinite acceleration. So the self-balance condition is necessary for such 
problems. For this case we have found that the only kind of free motion 
as a whole is u(x) = c: only for such displacements is the inner energy 
constant (because of linearity we can put u(x,y) = 1). This means that on 
this displacement the work of external forces must be zero: 

/ f(x,y)dxdy+ / g(s) ds = 0. 

If we restrict the external forces to those acting on the edge of the membrane 
so that f(x,y) = 0, we have 

/ g(s)ds = 0, 
Jdil 

and this is the well-known solvability condition for the Neumann problem. 
It has a clear mechanical sense: the external forces must be self-balanced. 

Note that in classical mechanics the self-balance condition consists of 
six equations: the three projections each of the resultant force and moment 
onto the frame axes are all zero. The membrane model is quite approximate, 
hence does not satisfy all the conditions. This is typical of the approximate 
models of continuum mechanics. For linear elasticity the self-balance ap
pears exactly as it does in classical mechanics. 

We would like to mention that (4.1.6) and similar equations play an 
important role in what follows and in mechanics as a whole. It can be 
treated as the formulation of the virtual work principle. The term with 
minus on the left and the term on the right can be called the work of internal 
and external forces, respectively. With this interpretation the equation 
states a fundamental physical law: 

On any admissible displacements the sum of the work of internal 
and external forces of the system in equilibrium is equal to zero. 

In this particular case the equation can be obtained as the first variation 
of the total potential energy functional and so we can begin with formu
lation of the principle of minimum potential energy. There are body-force 
systems where the potential of external forces does not exist, and so we can
not use the same principle — however, the virtual work principle remains 
valid. Continuum mechanics treats the virtual work principle as indepen
dent, and relates it to the variational principles of mechanics. Thus the 
variational part of mechanics contains not only the problems of minimum 
of some functional, but also the theory of all the equations that, like (4.1.6), 
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contain some admissible fields of displacements, strains, or stresses. From 
the viewpoint of the classical calculus of variations, some part of continuum 
mechanics that is called "the variational problems of mechanics" is not a 
part of the calculus of variations. In mechanics, they consider as varia
tional anything that involves integro-differential equations containing some 
virtual variables and from which, using the main lemma of the calculus of 
variations, it is possible to derive relations such as equilibrium equations 
or constitutional equations for the material. 

Finally, let us note that in deriving (4.1.6) we used a set of smooth 
admissible variations <p of a solution; we do so even if we try to find a 
solution with some singularities. If we begin with the principle of minimum 
potential energy, it is reasonable to consider all the functions for which 
the terms of the principle make sense; moreover, there is no reason why 
admissible variations should be smoother than the solution. Later this 
remark will bring us to the generalized setup of boundary value problems 
of mechanics. 

Similarly, for many problems involving elastic objects (strings, beams, 
shells, 2-D and 3-D elastic bodies, etc.) we can derive a total potential 
energy functional whose first variation yields the equilibrium equations for 
the object. It has the structure £—V where £ is the inner potential energy of 
elastic deformation and V is the work of external forces.1 The condition of 
minimum of the energy functional gives us the equality of the first variation 
of the functional to zero on all the admissible variations of corresponding 
solutions. These integral equations, the equality of the sum of the work of 
internal and external forces on admissible variations to zero, also express 
the virtual work principle for corresponding problems, and it is of a more 
general nature than the principle of minimum potential energy. 

We write out corresponding relations (the total potential energy £ — V 
and the equation of the virtual work principle) for the following objects: 

1. Stretched rod (Figure 3.1): 

\ [ ES{x)u'2(x)dx- I f{x)u(x)dx-Fu(l), (4.1.7) 
2 Jo Jo 

[ ES(x)u'(x)v'(x)dx= f f(x)v(x)dx + Fv(l), (4.1.8) 
Jo Jo 

1In the case of potential forces V is the potential of the forces and, by analogy with 
elementary physics terminology for gravitational forces, the expression —V can be called 
the potential energy of the force field. 
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where f(x) is a force tangential to the rod axis, F is a stretching force at 
the free end of the rod, and u is the tangential displacement of points of 
the neutral axis of the rod. 

2. Bent beam (Figure 3.2): 

\ f EI(x)w"2(x)dx- [ f(x)w(x)dx-Fw(l), (4.1.9) 
2 Jo Jo 

f EI{x)w"{x)v"(x)dx = f f(x)v(x)dx + Fv(l), (4.1.10) 
Jo Jo 

where w is the transverse displacement of the neutral axis of the beam, 
f(x) is the transverse distributed force, and F is the transverse force on 
the end. 

3. Plate (Figure 3.4): 

/ (wlx + w2
yy + 2vwxxwyy + 2(1 - v)w2

xy) d£l- Fw dil, 
Jn Jn 

D_ 
2 

D l (WXXVXX + WyyVyy + V (WXXVyy + WyyVXX) + 2 ( 1 ~ v)WXyVXy) rffi 
JQ 

= f Fvdn, 
Jn 

where D is the plate rigidity, v is Poisson's ratio, and w = w(x,y) is the 
deflection at point (x, y) of the domain S occupied by the mid-surface. 

4. 3-D linearly elastic body: 

J f c y f c , e ,w(u)ey(u)dy- [ F-udV- f fudS, (4.1.11) 
2 Jv Jv JdVi 

f cijkleki(u)eij(v)dV = f F-vdV+ [ f-vdS, (4.1.12) 
Jv Jv JdVi 

where F are volume external forces and f are forces on some part of the 
boundary dV\. 

We will use the above formulas to introduce the notion of generalized 
solution for all these mechanics problems. 
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4.2 Equilibrium Problem for a Clamped Membrane and its 
Generalized Solution 

As we said, the equilibrium of a membrane with fixed edge can be formu
lated as the problem of minimum of the functional 

EM(u) = - \\-Q-)
 +{~a~) ) dxdy~ / f(x,y)u(x,y)dxdy. 

(4.2.1) 
We treat the case for which 

«lfln = 0- (4-2-2) 

Let us consider (4.2.1) in the energy space. We have introduced (§ 3.10) the 
space £MC for a membrane, which is a Hilbert space with an inner product 

L,V)M = / 
Jn 

( du dv du dv 

\ dx dx dy dy 
{u,v)M= [—— + ——) dxdy. (4.2.3) 

It is clear that the first term in (4.2.1) can be presented as | ( u , u ) m = 

\ llullm- ^ n e s e c o n < i term 

* ( u ) = / f{x,y)u(x,y)dxdy 
Jn 

is a linear functional in u. Let us suppose that / G LP(Q.) for some p > 1. 
By Holder's inequality we have 

|$(u) 

< 

/ f(x,y)u(x,y)dxdy 

f \ 1 , / p / f x 1^<? 

/ \f(x,y)\p dxdy) ( \u(x, y)\q dx dy 

with q = p/(p — 1). On the energy space by equivalence of the energy norm 
to the norm of W1'2^) and Theorem 3.7.3 we have 

( / \u(x,y)\q dxdy) < m\\u 

so 

mu)\<rn(J \f(x,y)\pdxdy) | IMlM = m l lMlM 

file:////-q-
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Hence $(w) is a linear continuous functional. By the Riesz representation 
theorem there is a unique UQ € £MC such that 

$(«) = («,uo)Af. (4-2.4) 

Thus the energy functional for a membrane with clamped edge can be 
represented in the energy space as 

1 2 

EM(u) = - \\u\\M- (U,U0)M- (4.2.5) 

Let us consider the problem of minimization of EM{U) in £MC-

Theorem 4.2.1 In the energy space SMC the functional EM(U) attains 
its minimum at u = uo, and the minimizer is unique. 

Proof. Let us transform the expression for 2EM(U): 

2EM{u) = \\u\\M - 2(U,U0)M 

= (u,u)M - 2(U,MO)M + (UO,UO)M - (uo,u0)M 

= (u - u0, u - U0)M - (uo, UQ)M 

= I I U - U O | I M - IKIlL> 

so 

1 2 

min£ M (u ) = - - ||UO|IM-

Uniqueness of the minimizer UQ is evident. D 

Let us return to (4.2.4). The equation to find the minimizer of the 
functional is the same equality to zero of the first variation of the functional 
EM (v.): 

X(^S + t f | ) dxdy = Jj(X,y)v(X,y)dXdy. (4.2.6) 

It is usually said that (4.2.6) defines a generalized solution uo G £MC to the 
Poisson equation AM = —/ with boundary condition (4.2.2) if u0 satisfies 
(4.2.6) for any v G £MC- This is often called the energy (or weak) solution. 
Finally, let us note that (4.2.6) expresses the virtual work principle for a 
membrane with clamped edge. 
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4.3 Equilibrium of a Free Membrane 

For the Neumann problem, the equation of equilibrium (the virtual work 
principle) is (see (4.1.6)) 

SMd^didi)dxdy=L/(*'vMx'y) dx dy+LgisMs) ds-
(4.3.1) 

The corresponding total energy functional is evidently 

- / f(x,y)u{x,y)dxdy~ / g(s)u(s)ds. (4.3.2) 
Jn Jan 

Equation (4.3.1) is then the equality of the first variation of EMI(U) to 
zero, as follows from general considerations of the calculus of variations. 
Again, we put the problem of equilibrium of a membrane with given forces 
g(s) on the edge as a problem of minimum of the energy functional EMI(U) 

on an energy space. Here we have the option to use a factor space £M/ 
(see § 3.10), or its isometric variant where we take the balanced elements 
satisfying the condition 

/ u(x, y) dx dy = 0. (4.3.3) 
Jn 

On the latter the problem of minimum of the energy is well defined if we 
require that 

f(x,y) e L^(Q), g(s) e L*»(0fi), (4.3.4) 

for some pi,p2 > 1- But on the factor space the energy functional is not 
well defined if the forces are not self-balanced with 

[ f(x,y)dxdy+ [ g{s)ds = 0. (4.3.5) 
Jn Jan 

If (4.3.5) is not fulfilled, then for different representatives of zero, u(x,y) = 
c, the energy functional EMI(U) takes different values, which is impossible 
when we seek the minimum of the energy functional. This is a conse
quence of the fact that in this model we neglect the inertia properties of 
the membrane. Thus considering the problem of equilibrium on the factor 
space EMI{U) we get an additional necessary condition (4.3.5) that we have 
called the condition of self-balance of external forces. This condition does 
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not arise when we adopt the second variant of the energy space, because 
(4.3.3) is an artificial geometric constraint that was absent from the initial 
problem statement and has been imposed as an auxiliary restriction. Al
though we do not need (4.3.5) when we consider the problem in this way, 
we should nonetheless carry it along since it is required by the initial setup. 

Under the restriction (4.3.5) on the forces, we can consider the problem 
of equilibrium of a free membrane as the problem of minimum of (4.3.2) 
on the space £M} of "usual" functions satisfying (4.3.3). Condition (4.3.4) 
is sufficient for EMI(U) to be well defined on SMJ- Indeed, we need to 
demonstrate only that the functional of the work of external forces is well 
defined in this space. Applying Holder's inequality we have 

l*(«)l = / f{x,y)u(x,y)dxdy+ / g(s)u(s)ds 

<( f \f(x,y)\Pldn) V [\u(x,y)\^di 

+ ([ \g(s)rds) P2 (f |u(s)|*dfi 

\JdQ J \JdQ 

< ™ ( l l / l l i P i (fi) + IMILP2(8$2) ) WUWM 

1/91 

1/92 

(4.3.6) 

where — + — = 1, — + ^- = 1, and the norm ll-llw is defined by (4.2.3). In 
the last transformation we used Sobolev's imbedding Theorem 3.7.3. Thus 
$(u) is well defined on £MJ- Linearity of this functional in u is evident, and 
(4.3.6) guarantees continuity. Hence by the Riesz representation theorem 

$(u) = (U,U0)M 

where uo 6 £ M / is uniquely defined by the external forces / , g. Hence the 
problem of minimum of EMI{U) can be reformulated as the problem of 
minimum of 

1 2 
EMi(u) = - \\u\\M - {u,u0)M- (4.3.7) 

There is formally no difference between the functional (4.3.7) and (4.2.5), 
so we can simply reformulate the results of § 4.2 for this problem as 

Theorem 4.3.1 Let (4.3.4) and (4.3.5) be valid. In the energy space £M/ 
the functional EMI{U) attains its minimum at u = UQ and the minimizer 
is unique. 
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The minimizer is a generalized solution of the equilibrium problem for 
a membrane with free edge. We shall see that all the linear problems 
of equilibrium we consider reduce to the same problem of minimum of a 
quadratic functional having the same form 

E{u) = i | | u f - $(u) (4.3.8) 

where $(u) is a linear continuous functional. The proof of Theorem 4.2.1 
does not depend on the nature of the space in which it is done, so we can 
immediately formulate 

Theorem 4.3.2 Let $(u) be a linear continuous functional acting in a 
Hilbert space H. Then the problem of minimum of (4.3.8) has a unique so
lution UQ € H defined by the Riesz representation theorem: $(u) = (U,UQ). 

Applications of this theorem appear in the next section. 

4.4 Some Other Problems of Equilibrium of Linear Me
chanics 

All the mechanics problems for which we presented the energy functional 
and the virtual work principle in § 4.1 ((4.1.7)-(4.1.12)) are of the type of 
(4.3.8) where the linear functional $(u) is the potential of external forces 
(or, what is now the same thing, the work of external forces) on the dis
placement field u. Theorem 4.3.2 asserts the generalized solvability of a 
corresponding boundary value problem and the uniqueness of its general
ized solution if <!>(u) is continuous. Thus we need to determine when 3>(u) 
is continuous. For this we shall use Sobolev's imbedding theorem and the 
fact that the corresponding energy space is a subspace of a Sobolev space 
Wl'2(£l). The corresponding theorems are formulated so similar to Theo
rem 4.3.1 that we leave them to the reader. We show only the restrictions 
on external forces to provide continuity of the corresponding potential of 
external forces as a functional in the corresponding energy space. 

Stretched rod 

See (4.1.7) and (4.1.8). Here u(0) = 0 and 

$ ( u ) = / /(a;)u(a;)da; + Fu(0 . 
Jo 
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In this case u(x) is continuous on [0,1} (we recall that this means that each 
representative Cauchy sequence for an element of an energy space converges 
to a continuous function) and so if 

then 

where 

f(x)GL(0,l) 

!*(«)! = / f(x)u(x)dx + Fu(l) 
Jo 

< f / \f(x)\dx+\F\ J max |u(a:)| 
\Jo J *e[o,i] 

<mU \f(x)\dx + \F\\\\u\\R 

f ES(x)u'2(x)dx 
Jo 

1/2 

Bent beam 

See (4.1.9) and (4.1.10). Now we can consider different variants of boundary 
conditions. For clamped edges we formulate 

w(0) = 0 = io'(0), w{l) = 0 = w'(l), 

and now the energy space for a bent beam with the norm 

w = (^EI(x)i 
1/2 

,/,2 
w" (x) dx 

is a subspace of W2'2(0,l) in which functions and their derivatives are 
continuous on [0,1] and the corresponding operator of imbedding into the 
space of continuously differentiable functions is continuous. By this we 
can get a sufficient condition for the potential of external forces $(w) = 
Jo f(x)w(x) dx + Fw(l) of the same type as for a stretched rod: 

f(x)eL(o,i). 

The proof is the same as above. However, in this case it is possible to include 
in the expression of the potential, and thus into the setup, the point external 
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torques and transverse forces that are common in the strength of materials 
(they are presented with 5-functions). The proof remains practically the 
same. 

As to other variants of boundary conditions for a bent beam, the differ
ence comes when the beam can move as a rigid whole. Then the situation 
is quite similar to that for a free membrane. A rigid motion of a free beam 
(i.e., a function w for which | |w||BB = 0) now has the form w = a + bx. Dif
ferent boundary conditions can restrict the constants a and b (above they 
are zero). If the beam can move as a rigid body, then there arise additional 
restrictions which are conditions of self-balance of external forces: 

/ 
Jo 

i 

f(x)(a + bx) dx + F{a + bl)=0 

for all admissible a, b. In case the only geometrical boundary constraint is 
u>(0) = 0, this reduces to 

/ 
Jo 

•i 

xf(x) dx + lF = 0. 

Plate 

As above, there are various possible boundary conditions. When the edge 
of the plate is clamped, 

I n dw\ 
loSi Qn I of! 

The norm of the corresponding energy space £pc, which is 

1/2 

W / K x + Wly + 1vwxxWyy + 2(1 - v)wly) dfl) 

as was shown in Chapter 3, is equivalent to the norm of W2'2(Cl) when Q 
is compact in R2. In this case £pc is imbedded continuously into C(fi). 
Because of this the potential of external forces is a continuous functional 
in the energy space when there are not only distributed forces, but lumped 
forces as well: 

f N 

$(w)= / F(x,y)w(x,y)dSl + 'S2Fkw(xk,yk). 
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Indeed 

l*MI = / F(x,y)w{x,y)dQ. + S^Fkw{xk,yk) 

< / \F(x,y)\dxdy + y2\Fk\) max w(x,y) 
\Ja £ J J «.wen 

<mU \F(x,y)\dxdy + J2\Fk\) \H\P 
k-l 

= m1 \\w\\p. 

So the condition 

F(x,y)eL(Sl) (4.4.1) 

is sufficient for $(tu) to be a linear continuous functional, and thus in this 
case there exists a unique generalized solution to the problem of equilibrium 
of the plate with clamped edge. 

If the edge of a plate is free of constraints of geometrical type, then 
there appear motions of the plate as a rigid whole that satisfy 

IHIP = O. 

The corresponding rigid motions are 

w = ax + by + c 

where a, b, c are constants. As in the theory of the free membrane, the 
condition of self-balance of the external forces appears: 

f N 

$(ax + by + c)= / F(x,y)(ax + by + c) dfl + V"F k (ax k + byk + c) = 0. 
J a fc=i 

(4.4.2) 
This holds for all o, b, c, so it represents three equations for the external 
forces that express equality to zero of the resultant force and resultant 
moments with respect to the coordinate axes (the reader should write them 
out and see that this is really so). Condition (4.4.2) must be added to (4.4.1) 
as a necessary condition for solvability of the problem. 

If there are some other geometrical constraints on a plate, then the 
appearance of the self-balance condition depends on whether the constraints 
leave some freedom to the plate. For example, if it is fixed at three points 
that are not on the same straight line, then there are no rigid motions. 
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But rigid motions arise if only some straight segment in the mid-surface of 
the plate is fixed, since the plate can rotate about this axis and so some 
condition of self-balance appears. 

Elastic body 

We showed that when the boundary of the body is clamped then the energy 
norm 

1/2 

f cijklekl(u)eij(u)dV 

,fc is equivalent to the norm of the Sobolev space (Wrl,2(V)) whenV is com
pact in Rfe, k = 2,3. In the 2-D case the imbedding result is exactly as for 
the membrane, and thus a sufficient condition for generalized solvability is 
that the Cartesian components of the vector of external forces belong to 
some LP(S) with p > 1. Mathematical physicists prefer "if and only i f con
ditions for solvability, and have introduced the so-called negative Sobolev 
spaces. In terms of these the forces are completely characterized; the only 
trouble is that in a practical sense this condition gives us no more than 
if we simply say "the corresponding functional must be continuous in the 
space", so sufficient conditions are preferable in practice. 

For a 3-D elastic body, the imbedding of Wl'2(V), when V is compact, is 
a continuous operator to LP(V), 1 < p < 6, and to Lq(S), 1 < q < 4, where 
S is a piecewise smooth surface in fl. In this case, conditions sufficient for 
generalized solvability of the problem of equilibrium of a body with clamped 
boundary are 

Fe(LP(V)f, p>6/5, fe(L<*(dV))3, q>4/3. 

Indeed 

|*(u) | / F-udV+ f i-udS 
JV JdV 

<(JvlFl>^vf(frW*v)V° 

< m (([ \F\"sdvy° + (J \!f"ds)S"] ||u|| 
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where we have used Holder's inequality and the equivalence of the energy 
and Sobolev norms. 

When we consider the equilibrium of a plate that is free of geometrical 
constraints, there arise motions of the body as a rigid whole: 

u = a + b x r 

(we recall that these satisfy ||u||B = 0), which imply that for a body free 
of geometrical constraints the forces must be self-balanced with 

/ F • (a + b x r) dV + f f • (a + b x r) dS = 0. 
JV JdVx 

This equation must be fulfilled for all a and b, giving six equations which are 
precisely the conditions of self-balance in classical mechanics: the resultant 
force and the resultant moments are zero. 

In the case of mixed boundary conditions, if the body can move somehow 
as a rigid whole, then we must retain some subset of the conditions of self-
balance of the load. If the body can rotate about a fixed point, for example, 
then the resultant moment with respect to the fixed point must vanish. 

Finally we would like to note the following. The 1-D problems and 
the plate problem allow us to formulate boundary conditions at a point, 
and the corresponding boundary value problems in their generalized setup 
are well posed. But in the problems for the membrane or elastic body, 
point conditions do not "function": elements are determined only in the 
sense of Lp, and point conditions make no sense (the setup "neglects" such 
conditions). So such a setup, with a given value of a function at one point, 
is not sensible in a generalized (energetic) formulation. 

It is sensible to note that when the problem involves elastic support 
of the type of a Winkler foundation or some interaction of elements with 
different models like a coupled 3-D elastic body with a plate, the variational 
statement of the problem includes the sum of internal energies of all the 
elements of the system. It is necessary to add some geometrical conditions 
of compatibility of fields of displacements between the bodies involved. The 
norm of the corresponding energy space must contain all the functionals of 
internal energies of the bodies (quadratic terms that are non-negative) and 
sometimes the energy space is quite strange from the point of view of the 
classical theory of Sobolev spaces. For such "coupled" models, we introduce 
constraints of geometrical nature on how the coupled elements interact 
explicitly, but not the conditions for stress terms: the stress conditions on 
the border are derived in a manner similar to the way in which it is done for 
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the natural boundary conditions in the general theory. This prevents crude 
errors that are quite common for the setup of similar problems, i.e., when 
someone tries to write out the equations of force balance for the border 
elements in cases when the models approximate real stresses in different 
fashions. 

Nonhomogeneous geometrical boundary conditions 

We have considered homogeneous boundary conditions of the type u\ga = 0 
because they provide linearity of the corresponding energy space. There are 
two ways of considering 

u\dn = a(s) (4.4.3) 

where a(s) is a given function. One is to consider the problem of minimiz
ing on a closed cone of all elements satisfying (4.4.3); this is the way it is 
done in variational inequalities, but we shall consider this later. The other 
is quite traditional for mathematical physics: we assume the existence of 
an element with some differential properties that satisfies (4.4.3), and then 
seek a solution as a sum of this element and another element that satis
fies homogeneous boundary conditions. We shall demonstrate this for the 
membrane problem; for the rest it is done in a similar fashion. First we 
suppose that there is an element u*(x,y) € W1'2(Cl) (as usual we speak 
about functions with the understanding that such elements are actually 
due to the procedure of completion of the set of continuously differentiable 
functions) and seek the minimum point u of the energy functional 

EM(u) = - ( f o ^ ) + [-Q-) ) dxdy- f(x,y)u(x,y)dxdy 

in the form 

u(x,y) = u*(x,y)+v(x,y) 

where v(x,y) e SMC- That is, in particular, v satisfies the homogeneous 
boundary condition v\gn = 0. Redenoting v by u, we get the following 
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variational problem in £MC'-

- / f(x,y){u(x,y)+u*(x,y))dxdy -> i 
Ja 

The equality of the first variation to zero, the equation we need to solve to 
find a generalized solution, is 

/ 
Ja 

du dip du dip 
dx dx dy dy 

dxdy 
Ja 

- / 
Ja 

y)ip(x,y)dxdy 

( du* dip 

'n V dx dx 
du* dip 

dy dy 
dxdy. (4.4.4) 

A generalized solution of the equilibrium problem of a membrane with given 
displacement of the edge is an element u(x, y) s £MC that satisfies (4.4.4) 
for any ip{x,y) S £MC- The first term on the right is the same as in the 
equation for the problem with the homogeneous boundary condition. It is 
seen that the second term on the right is a linear functional in ip, so we can 
try to apply Theorem 4.3.2. For this we need to demonstrate that it is a 
bounded functional. Let us show this. Indeed 

a du* dip du* dip . 
n \ dx dx dy dy 

< 

+ 

du* 

dx 

du* 
dy 

L2(Q) 

L2(fi) 

dip 

dx 

dip 

dy 

L2(H) 

L2(Q) 

< " » | | u * | | w i , 2 ( n ) | M | M . 

Thus by Theorem 4.3.2 there is a unique generalized solution to the prob
lem under consideration. The following question remains. Redenote the 
above homogeneous part of the solution tti. Suppose we choose another 
fixed function u** that takes the same boundary values, and find the ho
mogeneous part of the solution denoted «2- Do we have uniqueness in the 
sense that U\ + u* = u^ + u**l Denote U21 = u-i — u\ and subtract the 
equation for u\ from the equation for u<i with the same admissible variation 
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<p. We have 

a du2\ dip du2i d<ps 

dx dx dy dy ' 

a d(u**-u*)dip d{u** - u*) d^. 
dx dx dy dy 

But the difference u** — u* belongs to SMC (why?), so since <p is an arbitrary 
element of £MC we have U21 = u** — u*. This completes the proof. 

A big chapter in the theory of Sobolev spaces is concerned with the 
so-called trace theorems. These deal with the question of which conditions 
must be stipulated on the boundary values in order to insure the existence 
of an element of a Sobolev space taking them as boundary conditions. The 
corresponding theorems require some smoothness of the boundary of the 
domain, and are not convenient for practical verification; however, they 
provide "if and only i f conditions for existence of a continuation of the 
boundary functions as a function inside the domain, in such a way that the 
corresponding operator of continuation is continuous. Hence there arise 
Sobolev spaces Wl'p(il) with fractional parameters /. 

Finally, we would like to note that the study of generalized solutions 
is usually the first step in the study of smoothness properties of solutions 
(see Sobolev [Sobolev (1951)]). The birth of functional analysis was signaled 
when in this way Hilbert justified the Dirichlet principle (i.e., the same prin
ciple of minimum of potential energy) for the solution of Laplace's equation 
with given boundary data, and showed that there exists an analytical so
lution of the latter under some restrictions on the given boundary function 
and the boundary itself. However, there is an important case for which 
practitioners find precisely the generalized solution. This is the subject of 
the next section. 

4.5 The Ritz and Bubnov-Galerkin Methods 

We have seen that all problems in the linear mechanics of solids that we 
wish to consider have the form 

1 2 
E{u) = -\\u\\ - $ ( u ) - > m i n 

where H is a Hilbert (energy) space and $(u) is a linear continuous func
tional on H. Moreover, with use of the Riesz representation theorem this 
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problem reduces to the minimum problem 

1 2 

E(u) = - ||w|| - (u,u0) —> min (4.5.1) 
Z H 

with a given UQ € H. We shall not concretize this for each mechanical 
problem under consideration, leaving that work to the reader, but shall 
discuss the problem of finding an approximate solution in abstract form. 
At first glance the last version of the problem is quite trivial: we know the 
solution is «o- However, we should not forget that UQ is determined only 
theoretically; the term (U,UQ) stands in place of a functional <&, and the 
role of (4.5.1) is to simplify intermediate steps and to help us understand 
their meaning. 

Ritz was the first to think, in practical terms, of the possibility of find
ing a minimizer, not on the whole space H but on some of its subspaces. 
In Ritz's time all calculations were done manually, so it was extremely im
portant to find methods that involved as few steps as possible. Thus it 
was necessary (and still is, despite the capabilities of computers) to find a 
subspace that has minimal dimension but that can provide good approxi
mation.2 The finite dimensional subspace was constructed by the choice of 
basis elements ei, e 2 , . . . , e„. They should be linearly independent which, 
as is shown in linear algebra, means that the Gram determinant 

± 0. (4.5.2) 

We also assume the set e i , e 2 , . . . , e „ , . . . to be complete in H; that is, 
any element of H can be approximated within any given accuracy by a 
finite linear combination of elements from the set. Denote by Hn the space 
spanned by e\, e2, • • •, sn- We call 

1 2 
Eiu) = o HUH ~ (u>uo) ~+ min 

( e i . e i ) 

(e2,ei) 

( e n , e i ) 

( e i , e 2 ) •• 

(e 2 , e 2 ) •• 

(e„ ,e 2 ) •• 

• ( e i , e„ ) 

• (e 2 , e„) 

\&ni&n) 

2 The reader notes that the approximate models of mechanics like the theory of shells 
and plates has the same goal: to reduce the full dimensionality of the problem so they 
reduce the dimensionality of space coordinates for thin-walled structures from 3-D to 
2-D by introducing some hypothesis on the form of deformation or the order of some 
components strains. The same but more directly, does the Ritz method: it reduces 
possible forms of deformation of a body to that one which are expected to approximate 
the real ones more or less accurately. 
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the Ritz method for the solution of (4.5.1). 
Let us denote the minimizer of the problem by un — Y^k—\ ckek where 

the Cfc are constants. The equality to zero of the first variation of this 
functional for all admissible variations v S Hn is 

(un,v)-(uo,v)=0. (4.5.3) 

Since e\, e2, • • •, en is a basis of Hn, the last equation is equivalent to the n 
simultaneous equations 

^ c f c e f c ) e i J = (u0 ,ei) , 
,fc=i / 

^ c f c e f c , e 2 J = (uo,e2), 
Kk=l 

(u0,en), (4.5.4) 

called the Ritz system of the nth approximation step. The system can be 
rewritten as 

(ei,ei)ci + (e2,ei)c2H h(e„,ei)cn = $(ei) , 

(ei,e2)ci + (e2,e2)c2-\ l-(e„,e2)cn = $(e2), 

(ei, e„)ci + (e2, e„)c2 H h (en, e„)c„ = $(e n ) . (4.5.5) 

On the right side of (4.5.4) there are given some numbers. It is necessary 
to find the unknown c^. 

Theorem 4.5.1 The system of simultaneous equations of the nth ap
proximation has a unique solution un = Y^k=ickek- The sequence {«„} 
converges strongly to the solution of the problem (4.5.1). 

Proof. It is easy to see that the principal determinant of this system is 
the transposed Gram determinant so, by the condition (4.5.2), the system 
(4.5.5) has a unique solution. Let us return to (4.5.3), which we rewrite as 

(un — UQ, V) = 0 for all v G Hn. 
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This means un — UQ is orthogonal to Hn. Another interpretation is that un 

is an orthogonal projection of UQ into Hn. Besides, it is easily seen from 
(4.5.4) that if ei,e2, . . . , e „ is an orthonormal basis of Hn, then (4.5.4) 
defines the Fourier coefficients Ck = (uo,ek) of the solution w0. Thus, by 
the Bessel inequality 

\\un\\ < \\uo\\-

Even if ei, e 2 , . . . , e„ is not an orthonormal basis of Hn, we always can 
construct an equivalent orthonormal basis of Hn which consequently defines 
an orthonormal basis of H. Thus the Fourier expansion of UQ lies in the 
space spanned by this basis, and when we find the Ritz approximation un 

it coincides with the first n terms of that Fourier expansion. By the general 
theory of Fourier expansion, {un} converges strongly to UQ in H. • 

The only remark needed regarding mechanical problems concerns the 
problems with free boundary. Such problems may be treated theoretically in 
factor spaces and in spaces of balanced functions. In numerical calculation 
by the Ritz method, only the balanced function spaces are appropriate. 
If we work in the corresponding factor spaces, the solution would contain 
the same undetermined constants of rigid motions, which means that the 
corresponding determinant would be zero. Because of rounding errors and 
other numerical uncertainties, the system of the Ritz method (and any 
other numerical method) can lose the compatibility present in the initial 
setup, whereas in the energy space of balanced functions there are no such 
problems. 

4.6 The Hamilton-Ostrogradskij Principle and the Gener
alized Setup of Dynamical Problems of Classical Me
chanics 

One of the main variational principles of classical dynamics, the Hamilton-
Ostrogradskij principle, is not minimal. It asserts that the real motion of 
a system of material points, described by generalized coordinates 

q(t) = (9i(t),92 («)»••• >*»(*)) 

and under the influence potential forces, occurs in such manner that among 
all the motions from the initial position qo taken at time instant to to the 
final position qi taken at time instant t\, the real motion yields an extremal 
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for the action functional 
i-ti 

L(q,q,t)dt. (4.6.1) 
110 

Here an overdot denotes differentiation with respect to time t. The function 
L is called the kinetic potential and is given by 

/ ' 
Jtn 

L = K-E (4.6.2) 

where K and E are the kinetic and potential energies, respectively, of the 

system. The first variation of this functional is 

where all variations 6qi of the generalized coordinates are considered as 
independent functions (cf., Chapter 1), and 5qi(to) = 0 = 5qi(t\) for 
i = 1,2,.. . , n. Prom the equality of the first variation to zero we obtain 
Lagrange's equations of motion 

^ 7 ^ - ^ - = 0 (4-6.4) 
dt oqi aqi 

which form the basis of Lagrangian mechanics and of physics as a whole. 
In general the action does not attain a minimum or maximum. Normally 
for Lagrange's equations (if not in Hamiltonian form) a Cauchy problem is 
formulated in which equations (4.6.4) are supplemented with initial data 

q(*o) = qo, q(*o) = qoi- (4.6.5) 

If we consider (4.6.3) as a generalized setup for some problem for (4.6.4), 
we see that (4.6.3) with the boundary conditions q(*o) = qo, q(*i) = qi> 
^q(*o) = 0 = <5q(£i) is formulated for a boundary value problem. How do 
we reformulate (4.6.3) and requirements for qi{t) to get a generalized setup 
for the Cauchy problem (4.6.4), (4.6.5)? We would like to do this because 
the same operation will be done when we go from equilibrium problems to 
the dynamic problems of the mechanics of solids. Let us take a special class 
of variations <$q(t) that are continuously differentiable and have <Sq(<i) = 0. 
Denote this class D\. Take <$q(t) 6 D\, multiply (4.6.4) by 8qi(t), sum over 
i, and integrate over [£o>*i]: 

y*1 vf——-—^ Sqi dt = 0. 
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Integration by parts (the operation inverse to the standard one done in the 
calculus of variations) gives 

CtiX^'-tM^L-"- ("-6) 
In the second sum, the terms given at to, there stand values (4.6.5) so they 
do not contain <?»; in the integrand there participate only qi{t) and qi(t) 
whereas (4.6.4) contain second derivatives of qi(t). Thus the requirements 
for qi(t) in (4.6.6) are less than in (4.6.4), and it is sensible to formulate 
a generalized setup of the Cauchy problem using (4.6.6) because now in 
(4.6.6) we need not appoint values for q and q at instant t\ in advance. It 
is clear that from (4.6.6), using the standard procedure of the calculus of 
variations we can obtain (4.6.4) if require (4.6.6) to hold for any <5q(t) 6 D\. 

Next we need to define a space in which we seek a solution. Usually 
this would be a space where in the norm there is integration over time, 
and this means we cannot stipulate on a generalized solution the point 
condition q(to) = qi> it comes into the definition through the second sum 
term of (4.6.6). The first initial condition q(to) = Qo could be stipulated 
as a separate one. We do not formulate exact statements now because, first 
of all, the form of the norm depends on the form of L and the statements 
would depend on this. More important is that the generalized setup is not 
introduced in classical mechanics. We have engaged in these considerations 
only to prepare ourselves for the more complex problems of continuum 
mechanics, for which all of the pertinent details will be repeated. 

4.7 Generalized Setup of Dynamic Problems for a Mem
brane 

In continuum mechanics the Hamilton-Ostrogradskij principle can be for
mulated in the form (4.6.1), (4.6.2) as well: 

5 [l Ldt = 0, L = K-E, 

where for each of the objects we have considered in equilibrium — beam, 
membrane, plate, elastic body — E is the energy functional we used (the 
difference between the elastic energy of an object and the potential of ex
ternal forces acting on the object); here the state of the body at to a n d t\ 
must coincide with the real states of the body. The kinetic energy K is 
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given in the common manner 

I/** K 

where S is the domain taken by the object in a coordinate frame and p is 
the specific density of the material. For example, in the case of a 3-D elastic 
body the equation of the Hamilton-Ostrogradskij principle looks like 

S J ' UJ pu2dV- \ j c«Hew (u)ey(u) dV 

- ( [ F-udV+ f f - u d S J \dt = 0 

for any admissible variation of displacement vector 5u. Here u must satisfy 
the geometrical boundary conditions of the problem, Su = <5u(x, t) the 
homogeneous geometrical boundary conditions and, besides, 

5u(x, to) = 0 = <5u(x, ti). 

So this formulation corresponds to a boundary value problem as if the values 
of u(x, t) are given at t — to and t = t\. 

Now we would like to derive a generalized setup of the Cauchy problem 
for the dynamic problems under consideration. It is clear that the cor
responding energy spaces should include the terms with integrals for the 
kinetic energy and, besides, if we would like to use the tools of Hilbert 
spaces, integration over time should be incorporated into the norm. The 
form of the integrand of the part of the action for E remains the same, so 
we need only consider what happens to the kinetic energy term. We begin 
with the universal equation that is the virtual work principle in statics. To 
simplify the calculations we consider a membrane; the remaining problems 
can be treated in a similar fashion. We combine the virtual work principle 
with d'Alembert's principle, which asserts that the system of external forces 
can be balanced by the inertia forces. For a membrane the work of exter
nal forces complemented by the forces of inertia on a virtual displacement 
v(x, t) is 

/ ( /(x, t) - pu(x, t))v(x, t)d£l, dQ, = dxdy. 
JQ 

Thus, for a membrane with clamped edge, the virtual work principle gives 

£ ( s ! M ! ) *=/(/(M)~MM)MM«. («.!) 
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Of course we could begin with the differential equations of motion and ob
tain the same result step by step, but we take a shorter route. We suppose 
all functions are smooth enough to provide for the necessary transforma
tions, and that the virtual displacement v satisfies 

v(x,T) = 0 . 

Let us integrate (4.7.1) over time and integrate by parts in the last term: 

+ pu(x,t)v(x,t)dSldt+ / pul(x)v{x,0)dQ,. (4.7.2) 
Jo Jn Jn 

Here ul(x) is an initial condition for u(x, t): 

u ( x ' *) I t=t0
 = uo (x) . "(x, t) | t = t o = u* (x). 

We shall use (4.7.2) for the generalized setup of the dynamic problem for a 
membrane. To do this we need to introduce proper functional spaces. 

An energy space for a clamped membrane (dynamic case) 

Without loss of generality we can set to = 0 and denote t\ = T. It is clear 
that the expression for an inner product in this space should include some 
terms from (4.7.2). Let it be given by 

, x fb f -, x./ x ,« , fb f (dudv dudv\ tn , 

(4.7.3) 
The energy space denoted as £MC(O-, b) is the completion of the set of twice 
continuously differentiable functions that satisfy the boundary condition 

u\dn = 0, (4.7.4) 

with respect to the norm ||w|| = (w,u)[0(,]. Denote Qa,b = fi x [a,b]. 

Lemma 4.7.1 £Mc{a,b) is a closed subspace of W1'2(Qa>b)- The norm 
of £Mc{o~,b) is equivalent to the norm ofW1,2{Qa,b)-

Proof. It suffices to prove the last statement of the lemma for twice 
differentiable functions satisfying (4.7.4). The inequality 

(«.«)[a,6l <M\\ufwl,2(Qab) 
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is evident. Let us show that the inverse inequality with a positive constant 
m is valid as well. From the Friedrichs inequality it follows that 

[\Wfw,Ha) « < mfja (0 + ( | ) !) .««. 
Adding to both sides the term 

/ / pu2(x,t)dndt 

after easy transformations, we get the needed inequality. • 

By Sobolev's imbedding theorem, from Lemma 4.7.1 it follows that 
£Mc(a,b) is continuously imbedded into L6(Q(a,b)) and at any fixed 
t € [o, b] into Z/4(i7), so we can pose an initial condition for u to satisfy 
in the sense of L4{Vt). However we now demonstrate a general result that 
shows the meaning in which we can state the initial condition. 

Let H be & separable Hilbert space. Consider the set of functions of the 
parameter t € [o, b] that take values in H. In what follows H — L2(Cl). The 
theory of such functions is quite similar to the usual theory of functions in 
one variable. In particular, we can introduce the space C(H; a, b) of all 
functions continuous on [a, b] and taking values in H. Its properties are the 
same as those of C(a,b): if H is separable it is a separable Banach space 
with the norm of an element x(t) given by 

WX\\c(H;a,b) =™**\W)\\H-K ' ' ' t£[a,b] 

For functions with values in H we can introduce the notion of derivative as 

= X(t + At)-X(t) 
y ' At-o At 

as well as derivatives of higher order. The definite Riemann integral 

/ x(t)dt 

is the limit of Riemann sums that must not depend on the manner in 
which [c, d] is partitioned. Analogous to the spaces C^k\a, b), for functions 
with values in H we can introduce spaces C^(H;a,b) (we leave this to 
the reader). Finally we can introduce an analogue to L2(a,b), denoted by 
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L2(H; a, b). This is a Hilbert space with an inner product 

(x,y)L*(.H;a,b) = (x(t),y(t))H dt, (4.7.5) 
J a 

and is the completion of C(H;a,b) in the norm induced by (4.7.5). Note 
that L2(L2(£l); a, b) is -L2(Q0,h)- Quite similarly, we can introduce a Sobolev 
space W1,2{H\a,b) as the completion of C^(H;a,b) with respect to the 
norm induced by 

(x,y)W^(H;a,b) = / {(x(t), y{t))H + (x'{t), J/'(t)) H} dt. 
J a 

Lemma 4.7.2 Wl,2{H;a,b) is continuously imbedded into C(H;a,b). 

The proof mimics that of the similar result for W1 ,2(a, 6), so we leave 
it to the reader. Lemma 4.7.2 states that we can formulate the initial 
condition for u(x,t) at a fixed t in the sense of L2{Q) since the element 
of £MC(I, b), by the form of the norm, belongs to W1,2(L2(Q); o, 6) as well. 
However, for the formulation of the initial boundary value problem we need 
a stronger result. This is a particular imbedding theorem in a Sobolev space 
that is useful for hyperbolic boundary value problems. 

Lemma 4.7.3 If {un} converges weakly to uo in £Mc{a,b), then it also 
converges to uo uniformly with respect to t in the norm of C(L2(Cl);a,b). 

Proof. By equivalence on £MC(O-, b) of the norm of £MC{O-, b) to the norm 
of W1,2(QQib), and Sobolev's imbedding theorem, we state that 

IMI[a,6] < m (4-7-6) 

and that 

\\un-uo\\L2(Qab)-+0 a s n - > o o . (4.7.7) 

So un converges to uo strongly in L2(Qa^)- Now we need a special bound for 
an element of W1,2{L2(Sl); a, b), into which W1,2(Qa^) imbeds continuously. 
We derive the estimate for elements that are smooth in time t, and then 
extend to all the elements. Let c € [a, b) and A > 0 be such that c + A G 
[a, 6). Let t, s G [c, c + A]. We begin with a simple identity 
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from which 

J v2(x, t)dtl = J (v(x, s) + C d-^~fL do) dQ 

< 2 f v\x, s) <m + 2 f ( tdv{^e) de) dn. 

Let us integrate this with respect to s over [c, c + A]. Dividing through by 
A we get 

/ v2(x,t)dn < — / / v2(x,s)dQds 
Jn A Jc Jn 

Applying Holder's inequality to the last term on the right we have 

/ v2(x,t)dQ < — J v2(x,s)dnds 

Finally, direct integration in the last integral and simple estimates bring us 
to the desired inequality 

[ v2{x,t)dQ<^ [ v2(x,0)dnd0 + A [ f ^ f e ^ O d£ld6, 
Jn A

 ^QCC+A JQc,c+A V oB J 
(4.7.8) 

which is the basis for the proof of Lemma 4.7.3. By the completion proce
dure (4.7.8) extends to any element of £a^- We write it out for un — uo: 

f (un(x, t) - u0(x, t)f dfl < - | f (u„(x, 9) - u0{x, 9)f dtt d6 

Ju & iQCiC+A 

+ A / (d(un(x,e)-u0(x,9))\2
 dnM ( 4 ? 9 ) 

JQCC+A \ ^ J 

Let e > 0 be an arbitrarily small positive number. To prove the lemma it is 
enough to find a number N such that the right-hand side of (4.7.9) is less 
than e for any t S [c, c + A]. Let us put A = e/2m where m is the constant 
from (4.7.6). Then the last integral is less than e/2. By (4.7.7) we can find 
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N such that 

2 r F 

— / {un(x, t) - u0(x, t)f dQ, dt< -
^ JQC,C+A l 

independent of t g [c, c+ A]. Since this is independent of c S [a, b\ we 
establish the result for all t € [a, b\. • 

Generalized setup 

Without loss of generality we consider the initial problem on [0, T] for fixed 
but arbitrary T. In this case we use the energy space £MC(0, T). In addition, 
we need to define a closed subspace which is the completion of the subset 
of twice continuously differentiable functions satisfying (4.7.4) that vanish 
at t = T. We denote this by D j . 

Definition 4.7.1 u(x, t) € £Mc(0,T) is called a generalized solution of 
the dynamic problem of a clamped membrane if it satisfies the equation 

+ / / pu(x,t)v{x.,t)dildt+ / pul(x)v(x,0) dCl (4.7.10) 
Jo Jn JQ 

with any v(x, t) € DQ and the first initial condition 

« ( x , t ) | t = 0 = « 5 ( x ) (4.7.11) 

in the sense of L2(Q), that is, JQ (u(x, 0) — UQ(X)) dfl = 0. 

Let us suppose that 

(i) uj$(x) G W 1 , 2 ^ ) and satisfies (4.7.4), 
(ii) u{(x) e L2(0), and 

(iii) / ( x , i ) e L 2 ( Q o , T ) . 

It is easy to demonstrate that under these restrictions all the terms of 
(4.7.10) are sensible. Our goal now is to prove the following. 

Theorem 4.7.1 Under restrictions (i)-(iii) there exists (in the sense 
of Definition 4-1.1) a generalized solution to the dynamic problem for a 
clamped membrane, and it is unique. 

The proof splits into several lemmas. First we construct an approximate 
method of solution of the problem under consideration, a variant of the 
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Bubnov-Galerkin method called the Faedo-Galerkin method. Then we 
justify its convergence. Finally, we give an independent proof of uniqueness. 

The Faedo—Galerkin method. 
Suppose there is a complete system of elements of £MC any finite set of 
which is a linearly independent system. In applications these are normally 
the smooth functions except in the finite element method where they are 
piecewise smooth. Take the first n elements of the system. We always can 
"orthonormalize" the latter system with respect to the inner product of 
L2(Ct): 

p f <pi(x)<pj(x)<m = 6ij = \1' \=J: (4.7.12) 

This is done only to simplify calculations (and to get the final equations in 
normal form); it is not necessary in principle. We seek the nth approxima
tion of the solution in the form 

n 

un(x,t) = Y/Ck(t)<Pk(x) (4.7.13) 
fe=i 

where the c^ (t) are time functions that satisfy the following system of the 
Faedo-Galerkin equations, which are implied by (4.7.1) in which we put un 

instead of u and consequently (fi instead of v. 

(4.7.14) 
for i = 1 , . . . , n. These can be written as 

p u„(x,i)</5i(x)dn = -(un,<pi)M + / f(x.,t)ipi(x)d£l, i — l,...,n. 
Jfi Jn 

Finally, using (4.7.13) and (4.7.12), let us rewrite this as 

" f 
Ci(t) = -y2ck(t)(<Pk,<Pi)M + / f{x,t)(fii(x)dfl, i = l,...,n. (4.7.15) 

This is a system of simultaneous ordinary differential equations for which 
we must formulate initial conditions. The condition u(x, i)|t=o = ui(x) and 
(4.7.12) imply 

Ci(0) = p~1/2 f uj(x)y>i(x) dSl, i = 1 , . . . , n. (4.7.16) 
Jn 
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From (4.7.11) we derive the following conditions for Cj(0). Let us solve the 
problem 

2 

-» min . (4.7.17) 
ai,. . . ,an 

M 

We know this is solvable; moreover, its solution di,...,dn gives us 
5Zfc=i dkVk, the orthogonal projection in £MC of uo onto the subspace 
spanned by <pi,...,ipn. Thus the second set of initial conditions is 

Ci(0)=di, * = l , . . . , n . (4.7.18) 

So the setup of the nth approximation of the Faedo-Galerkin method 
consists of (4.7.15) supplemented with (4.7.16) and (4.7.18). We begin by 
establishing the properties of this Cauchy problem. 

Unique solvability of the Cauchy problem for the nth ap
proximation of the Faedo—Galerkin method. 
We would like to understand what we can say about the solution of the 
Cauchy problem (4.7.15), (4.7.16), (4.7.18). The simultaneous equations 
(4.7.15) are linear in the unknown Ci(t). The load terms Jn f(x, t)<pi(x) dQ, 
belong to L2(0,T); indeed, by Schwarz's inequality 

j (Jf(x,t)vi(x)dn\ dt<J (Jf2(x,t)dn\(J^(x)dn\dt 

= l l<^llL2(n)ll/llz,2(Qo,r)-

From general ODE theory the Cauchy problem (4.7.15), (4.7.16), (4.7.18) 
has a unique solution on [0,T] with arbitrary T such that 

c ' / ( i )eL 2 (0 ,T) 

and c^t),^^) are continuous on [0, T]. This can be shown by the traditional 
way of proving such results, in which a Cauchy problem is transformed into 
a system of integral equations (by double integration of the equations in 
time taking into account the initial conditions). For the integral equations 
the existence of a unique continuous solution can be shown with use of 
Banach's contraction principle, and then differentiation in time yields the 
remaining properties. Now we obtain the estimate of the solution that 
we need to prove the above theorem. The estimate for the solution Ci(t), 

fc=i 
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max \Y(c'k(t))
2 + Wife < TO. 

i = 1 , . . . ,n, is 

/ n n 

"Y^ck(t)<pk 
fc=i 

Indeed, let us multiply the ith equation in (4.7.15) by c'^t) and sum over i: 

n n n n -

^2'ci{t)ci(t) = -^T^2(ck(t)Vk,Ci(t)(pi)M + Y / / ( x , t ) c i ( t ) ^ (x )dn . 
i=\ i=\ fc=l i = l Jil 

(4.7.19) 
The term on the left is 

n .. , n ^ , n „ 

Y^Ciitfdiit) = ^jt^2ci{t)ci{t) = -p— J2 Ci{t)cj{t) J <pi(x)ifj{x)dn 

/ un(x,t)un(x,t)dQ, 

i=l 

d (\ 

dt \2 

Similarly 

1 d 
Yl Y2 (cfcWVfc> Ci(t)tpi)M = - — (u„(x,£),un(x, t))M 

= 1 A : = l 

and 

V ( f(x,t)6i(t)tpi(yi)d£l= f f(x,t)un(x,t)dn. 

So (4.7.19) can be presented as 

di\2P "(x>*)wn(x,i)dfij + -—{un(x,t),un(x,t))M 

= / f(x,t)un(x,t)dQ,, 
Jn 

or rewritten as 

2dt 
(p | |u„ (x , t ) | | i 2 ( n ) + | K ( x , t ) | | ^ j = / f{x,t)un{x,t)dtt. 
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Integrating over time t (renaming t by s) we have 

or 

2 / ~ds (^H""(x's)Hi2(n) + IM x ' s ) l lM) ds 

= I /(x, s)u„(x, s) dSlds 
Jo Jo 

+ \\un(x,t)fM) 

= 2 (pl|wn(x,0)| |^2(a ) + | |u„(x,0) | |^J 

+ / / f(x,s)un(x,s)dQds. 
Jo Jo 

Taking into account the way in which we derived the initial conditions for 
un, we have 

ll«n(x,0)||jr,a(n) < K ( x ) | | L 2 ( n ) , | |u„(x,0)| |M < | K ( x ) | | M • 

We can then state that 

\(p\\Un(x,t)\\l,{Q) + \\un(x,t)\\2
M) 

< 5(plK(x)ll2
L2W + IK(x)llL) 

+ / / /(x, s)un(x, s)d£lds. 
Jo Jo 

Using the elementary inequality \ab\ < a2/2e + eb2/2 we get 

/ / /(x,s)un(x,s)d£lds < — / / f2(x,s)dClds 
Jo Jn 2e J0 JQ 

+ « / / «n(x>*)' 
* Jo Jo 

<±- I [ f2(x,s)dVds 
Z£ Jo Jo 

eT f 
+ -— max / ui(x,s)dQ, 

2 s€[0,T)Jn 

)dQ,ds 
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SO 

i (p||n„(x,i)l|2
i2(n) + IK(x, i ) | | 2

M) < \ (p IK(x)| |2
L2(n ) + K ( x ) | | 2

M ) 

+ T" / f f{*,s)cmds 

+ —-- max / u2(x,s)dfl. 

Putting e = p/(2T) and taking the maximum of the left-hand side of the 
last inequality we get 

max 
te 

^(pK(x)irL2(n) + IK(x)||2M) < 
- 2 
+ - I f f2(x,s)drids 

Jo i n P 
P 
4 tifo.jj^n 

« / "n(x,*)< + - max / uif (x, i) dfi 

so 

max 
i€[i 

nax - (pl|w„(x,t) | |^2(n ) + | K ( x , t ) | | ^ J 

<i(HK(x)ll2
L2(fi) + IK(x)||2M) 

+ - f [ f2(x,s)dnds. 
P Jo Ju 

This is the needed estimate, which can be written out as 

max (p\\un{x.,t)\\2
L2{cl) + I K C M ) I I L ) < m 

where the constant m does not depend on the number n. In particular, 
from this follows the rougher estimate 

/ (p\\un(yL,t)\\2
LHn) + ||un(x,t)fM^ dt < mi 

which can be written in terms of (4.7.3) as 

(U„,U„)[ 0 ,T] < mi. (4.7.20) 
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Convergence of the Faedo-Galerkin method 

Now we show that there is a subsequence of {u„(x, t)} that converges to a 
generalized solution of the problem under consideration. Because of (4.7.20) 
{un} contains a subsequence that converges weakly to an element uo(x, t). 
We shall show that UQ(X, t) is a generalized solution. By Lemma 4.7.2 
we can consider it as a function continuous in t on [0,T] with values in 
L2(fl). Let us renumber this subsequence, denoting it by {un} (in fact, by 
the uniqueness theorem proved later, the whole sequence converges weakly 
so there is no need for renumbering; however, at this moment we are not 
assured of uniqueness). So, now we know that u„(x, t) tends to uo(x, t) 
weakly in £MC(0,T). First we show that UQ satisfies (4.7.11). Indeed, by 
the method of constructing the Faedo-Galerkin approximations un, we see 
that {u„(x, 0)} converges to the initial value wS(x) strongly in Wl'2{£l) and 
thus in L2(fl). On the other hand, by Lemma 4.7.3 {un(x, t)} converges to 
u0(x, t) in the norm of C(L2(fi); 0, T). Thus (4.7.11) holds for u0(x, t). Let 
us verify that (4.7.10) for u — «o(x, t) holds for any v(x, t) € DQ. First we 
reduce the set of admissible v to a subset of DQ defined as follows. Let 

n 

vk(t, x) = ^T dk(t)(pk (x), k < n 
fc=i 

where the dk(t) are continuously differentiable and dk(T) = 0. Denote 
the set of all such finite sums by D^f. This set is dense in D^ and thus, 
to complete the proof of Theorem 4.7.1, it is enough to demonstrate the 
validity of (4.7.10) for u — uo(x, t) when v G DQJ. Let us return to (4.7.14) 
for un: 

i = 1, . . . ,71. 

Multiplying the ith equation by d;(t) and summing from i = 1 to k we get 
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for k < n. Let us integrate this with respect to t: 

rT r 'dundvk , dundvk i .QW£ = 
Jo Ja \dx dx ' dy dy 

/ (f(x.,t) - pun(-x.,t))vk(x,t)d£ldt. 
Jo JQ 

Integrating by parts in the last term we get 

+ / / pw„(x,t)vk(x,t)dttdt+ / pun(x,0)t>fc(x,0)dfl. 
Jo Ja Jn 

Let us now fix Ufc(x, t) and let n —> oo. Because of the properties of un we 
have 

+ / / pwo(x,t)vk{*,t)dfldt + / puj(x)ufc(x,0)dn, 

as is required by Definition 4.7.1. 

Uniqueness of the generalized solution 

Theorem 4.7.2 A generalized solution of the dynamic problem for a 
membrane with clamped edge is unique. 

Proof. Let us suppose there exist two generalized solutions to the prob
lem under consideration, denoted as u' and u". Subtracting term by term 
the equations (4.7.10) for these solutions and introducing u = u" — u', we 
get 

(4.7.21) 
for any v G DQ . Also, 

u(x,t)\t=o = 0 
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holds in the sense of L2{0). Let us introduce an auxiliary function 

«,(*,*) = ( £ u ( x ' * ) < W ' tel°'T]' 
0, t>T. 

First we note that on [0, r] 

dw(x,t) 
= u(x,t). 

This and other similar relations between w,u are established by simple 
differentiation of the representative functions of corresponding Cauchy se
quences; then, the limit passage justifies that they hold for the elements 
themselves. It is seen that w(x,t) belongs to D$. Moreover, it has gen
eralized derivatives d2w/dtdx = du/dx, d2w/dtdy = du/dy in L2(Qo,T)-
Next, d2w/dt2 = du/dt £ L2(Q0,T)- Finally, as follows from Lemma 4.7.2, 
w and its first derivatives belong to C(L2(fi); 0, r) (the reader should verify 
this). Let us put v = w in (4.7.21). This equality can be written as 

r r du(x,t) , , in , r r (d2w dw d2w dw\ ,_,_, „ 

and rewritten as 

2 /£> \ 2" 

2io J a ^"-(i)-(^) \*"-°-d \ o/ fdw 
Ft 

Integrating over t we get 

/ 
2 / „ \ 2 

*•'<-'>-(£)-(£) * = 0. 

Using the initial condition for u and the definition of w we have 

= 0. [ Pu2(x,T)dn+ f \ 
Jo. Jn [ 

dw(x,t)\2
 t fdw(x,t)\2\ ^ 

dx J \ dy 

Here all integrands are positive so 

pu2(x,r) dfl = 0. 

t-o 

J 
in 

Since r is an arbitrary point of [0, T] we have u = 0. • 
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Let us recall that because of uniqueness it can be shown (by way of 
contradiction) that the whole Faedo-Galerkin sequence of approximations 
{un} converges weakly to the generalized solution of the problem under 
consideration in the energy space. 

4.8 Other Dynamic Problems of Linear Mechanics 

Let us briefly consider the changes necessary in order to treat various other 
dynamical problems of mechanics. 

We begin with a mixed problem for the membrane. If a portion of the 
edge is free from clamping and loading, how must our approach change? 
Only in the definition of the energy space. The removal of restrictions on 
the free part of the boundary simply requires us to use a wider energy 
space; then everything carries through as before, and the same theorems 
are formally established. 

When on some part Ti of the edge a load f(s,t) is given, then the 
equation for generalized solution appears as follows: 

+ / / ip(s,t)v(s,t)dsdt 
JO JFt 

+ I / pu(x,t)v(x.,t)dQ.dt 
Jo Jn 

+ [ pul(x)v(x,0)dQ. (4.8.1) 
Jn 

For solvability we also need 

¥>(*,*) ew^fX^rOjo.T). 

Under this restriction it is possible to demonstrate an a priori estimate 
of the generalized solution, and thus to prove existence of a generalized 
solution. The formulation and proof of uniqueness remain practically un
changed (except for the definition and notation for the energy space). 

We shall not consider in detail all the other problems of dynamics for 
the objects we studied in statics. The introduction of the main equation 
of motion always repeats all the steps we performed for the membrane. 
The corresponding energy space formulation, in which the inner product is 
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denoted by (-,-)e, yields 

/ (u(i),v(t))£dt = f(x,t)v(x.,t)dndt 
Jo Jo Jn 

+ I / ip(s,t)v(s,t)dsdt 
Jo Jvi 

+ / pu(x,t)v(y:,t)dCldt 
Jo Jn 

/9Ui(x)u(x, 0)dQ, J 
Jn 

which parallels (4.8.1) for the membrane. All the reasoning leading to 
the main theorems remains the same; again, the differences lie only in the 
definitions of the appropriate energy spaces. We leave it to the reader to 
formulate and prove the existence and uniqueness of generalized solutions 
for initial-boundary value problems in the theory of plates and for 3-D and 
2-D elastic bodies. 

4.9 The Fourier Method 

One of the main methods for solving dynamical problems is that developed 
by Fourier. The method facilitates the description of transient processes. 
Normally the class of loads considered analytically is not wide, and it is 
possible to find a partial solution that "removes" the effect of the load; 
it then remains to find how the behavior of a non-loaded object changes 
from some arbitrary initial state. For solving the latter problem, Fourier 
proposed a method of separation of variables. As an example let us consider 
the dynamic problem for a string, described by 

d2u 
dt2 ~ 

d2u 
dx2' 

with initial and boundary conditions 

u(0,t) --

We seek a 

= 0 = u(ir,t), u(x 

particular solution 

x e 

,0) =u0(x), 

to (4.c ).l) in 

:[0,W] 

du(x,0) 
dt 

= ui(x). 

the form u(x,t) = 

(4.9.1) 

(4.9.2) 

T(t)v(x). 
From (4.9.1) we have 

T"(t) X^x± 2 

T(t) X(x) 
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The value A can only be constant since each fraction of the equality depends 
on only one of the independent variables x or t. We need to find non-trivial 
solutions of this form. The equation 

X"(x) + X2X(x) = 0 (4.9.3) 

with the necessary boundary conditions 

X(0) = 0 = X{ir) (4.9.4) 

has nontrivial solutions only when A = k, k being a positive or negative 
integer; that is, Xk(x) = csinkx. There are no other non-trivial solutions 
to (4.9.3)-(4.9.4), which is typical of eigenvalue problems for distributed 
systems. Using this, we then find an adjoint solution for the equation 

T"(t) + k2T(t) = 0, 

whose general solution is 

Tk(t) = Cfco cos kt + Cfei sin kt. 

Hence Fourier obtained a general solution to the string (or wave) equation 
as 

oo 

2_] (cfco cos kt + Cfei sin kt) sin kx. (4.9.5) 
fe=i 

Finally, we can look for coefficients that satisfy (4.9.2). So a central role in 
Fourier theory is played by the eigenvalue problem, the problem of finding 
nontrivial solutions to a boundary value problem with a parameter, (4.9.3)-
(4.9.4). A similar problem arises in all linear mechanical problems, and in a 
similar fashion. In fact, we could begin at once to seek a class of particular 
solutions of the form eLtltv{x) where v(0) = 0 = v(n). Now we have the 
same eigenvalue problem for v(x): 

v" (x) + n2v(x) = 0 . 

Moreover, when we seek a general solution as a sum of particular real 
solutions, we come to the same expression (4.9.5). The same can be said 
for any of the linear mechanical problems considered earlier. Thus in every 
case we come to a particular eigenvalue boundary value problem, then to 
the problem of finding the coefficients of the corresponding Fourier series 
of the type (4.9.5), and finally to the problem of convergence. This will be 
considered in detail in the next few sections. 



348 Calculus of Variations and Functional Analysis 

4.10 An Eigenfrequency Boundary Value Problem Arising 
in Linear Mechanics 

For each problem considered earlier, the dynamic equations with use of the 
D'Alembert principle have the form 

(u,r,)e = -J P^rjdtl (4.10.1) 

where (•, -)£ is a scalar product in the corresponding energy space and n is an 
admissible virtual displacement. To formulate the eigenfrequency problem 
accompanying this equation, we put u = eIM'f(x) in (4.10.1) and obtain 

(v,r,)£=Pli
2 [ vrjdfl. (4.10.2) 

Let us put p = 1 (this can be done by appropriate choice of dimensional 
units, for example; it is done only to simplify the calculations). Since we 
now consider complex-valued u, we let 77 be complex as well. The second 
multiplier in a complex inner product is complex conjugated, so (4.10.2) 
takes the form 

{v,T))£ =p? I vrjdn. (4.10.3) 
Ja 

Equation (4.10.3) defines the general form of the eigenfrequency problems 
for the elastic objects considered in this chapter. 

Definition 4.10.1 If (4.10.3) has a nonzero solution v at some /_i, then 
v is called an eigensolution (eigenvector) and /i is called the corresponding 
eigenfrequency. The value A = l//x is called the eigenvalue of the object. 

Remark 4.10.1 We could arrive at the same eigenvalue problem by con
sidering heat transfer described by 

with zero temperature T on the boundary of the domain. If we seek a 
solution in the form T(x, t) = e_Mtu(x) in generalized statement, we get 
the equation that coincides with (4.10.3) governing eigen-oscillations of a 
membrane taking the same domain in the plane; the only discrepancy is 
the form of the parameter in the equation: it is ji for heat transfer whereas 
it is /x2 for the membrane. Next, introducing A = \j\x in the heat problem 
we get a parameter that is usually called the eigenvalue. However we will 
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keep our terminology since it makes more mechanical sense. Next there is 
a discrepancy between our terminology and that which is common in text
books of mathematical physics: we call eigenfrequencies the quantities that 
are called eigenvalues in mathematical physics; the reason is that in math
ematical physics they normally consider the equation in L2(Cl) so A = A is 
considered as an unbounded operator in L2(fi) and the terminology is bor
rowed from standard spectral theory. But in our approach this differential 
operator corresponds to the identity operator in an energy space. 

We have arrived at the problem (4.10.3) formulated in a complex energy 
space. The next lemma allows us to return to real spaces. 

L e m m a 4.10.1 All possible eigenfrequencies of the problem (4.10.3) are 
real. 

Proof. The result follows from the fact that (v,v)E and J^vvdCl are 
positive numbers for any v, hence so is p? — (v, v)E/ JQ vvdQ. O 

Since (4.10.3) is linear in v, now we can consider separately its real and 
imaginary parts, and so consider it only in a real energy space. Thus the 
equation we shall study is formulated in a real energy space, and so the 
eigenfrequency problem is as follows: 

Eigenvalue P rob lem. Find a nonzero u belonging to a real energy space 
£ that satisfies the equation 

(u,v)£ = n2 J uvdCl (4.10.4) 

for any v £ £. 

We require that £ is a Hilbert space and that there is a constant m > 0 
such that 

||u||e >m\\u\\w^(n) (4.10.5) 

for any u £ £. All the energy spaces we introduced had this property; in 
the case of a 3-D elastic body, u is a vector function, and in the integral 
on the right of (4.10.4) uv must mean a dot product of the displacement 
vectors u and v. 

Let us transform (4.10.4) into an operator form using the Riesz repre
sentation theorem. At any fixed u S £, the integral j n uv dQ, is a functional 
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linear in v. Schwarz's inequality, Sobolev's imbedding theorem, and (4.10.5) 
give us 

/ uvdfl 
i n 

< N I L 2 ( n ) ||«||La(n) 

<™i\\u\\wi*(n) Nliyi.2(n) 

<m2\\u\\£\\v\\e, (4.10.6) 

which means this functional is continuous for v G £. Thus it can be repre
sented as an inner product in £: 

[ uvdfl = (w,v)e, (4.10.7) 
in 

where w G £ is uniquely defined by u. (The second position of v in the 
inner product is unimportant since it is symmetric in its arguments.) Since 
to any u £ £ there corresponds w € £, we have defined an operator acting 
in £. Denoting this by A we have 

w = Au. 

With this notation (4.10.4) takes the form 

(u,v)E = fi2(Au,v)£. 

Since v G £ is arbitrary we get 

u = fi2Au. 

Although A has been introduced theoretically, we should be able to estab
lish some of its properties through the defining equality 

(Au,v)e = I uvdQ,. (4.10.8) 
i n 

Let us begin. 

Lemma 4.10.2 The operator A is linear and continuous on £. 

Proof. For linearity it is enough to establish the equality 

A{a\U\ + (X2U2) = aiAui + ct^An-i (4.10.9) 
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for any real numbers a* and elements u, e £. By (4.10.8) we have 

(A(aiui + a2U2),v)£ = / (a\Ui + a2u2)vd£l 
JQ 

= a i / uiwdfi + a2 / «2vdfi. 
Jn i n 

On the other hand 

(Aui,v)£ = / mvdQ,, i = l,2, 
Jo. 

and thus 

(A(aiui + a2u2), v)e = a i (Au1,v)e + a2 (Au2, v)e . 

From this (4.10.9) follows by the arbitrariness of v. To prove continuity of 
A let us use (4.10.6), from which 

/ uvdfl < ra2 |M|J|u||£. \(Au,v)£\ 

Setting v = Au, we get for an arbitrary u 

\(Au,Au)£\ <m 2 | | u | | £ | |Au | | £ . 

It follows that 

\\Au\\£ < m 2 | |u | | £ , 

and this completes the proof. • 

Definition 4.10.2 An operator B is called strictly positive in a Hilbert 
space H if 

(Bx,x) > 0 

for any x € H, and from the equality (Bx, x) = 0 it follows that x = 0. 

Lemma 4.10.3 The operator A is strictly positive in £. 

Proof. Clearly 

{Au,u)£ = / u2dCl>0. 
JQ 

If (Au, u)£ = 0, then u = 0 in L2(Q) and thus in £. D 

Lemma 4.10.4 The operator A is self-adjoint. 
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Proof. From the symmetry in the arguments u, v in the definition (4.10.8) 
and continuity of A, the proof follows immediately. Indeed, 

(Au,v)e — / uvd£l= I vudQ, = (Av,u)£ = (u,Av)£ 
Jn Jn • 

The last property we wish to establish is 

Lemma 4.10.5 The operator A is compact. 

Proof. It is enough to demonstrate that for any weakly Cauchy sequence 
{un} the corresponding {Aun} is a strongly Cauchy sequence. Let {un} be a 
weakly Cauchy sequence in £. By (4.10.5) it is a weakly Cauchy sequence in 
Wl'2(p) and thus, by Sobolev's imbedding theorem, it is a strongly Cauchy 
sequence in L2(fl). Let us use an inequality following from (4.10.6): 

/ 
Jn 

so that 

\(A(un -um),v)t 

uvdCl 

/ K 
Jn 

< "»3 |H |La ( n ) ||w||e . 

um)vdfl < m 3 | K - u m | | L 2 ( n ) N | 

Putting v = A(un — um) we get 

\{A(un - um), A(un - um))£\ < m3 \\un - um | |L2 (n) \\A(u 

so that 

\\A(un - u m ) | | £ < m3 \\un -Um| |L2 ( n ) -*• 0 as n,m—> oo. 

This completes the proof. • 

4.11 The Spectral Theorem 

The results of this section are general despite their formulation in energy 
spaces. They apply in any separable Hilbert space S, whether or not the 
space relates to any mechanical problem. We suppose A is a self-adjoint, 
strictly positive, compact operator acting in a real Hilbert space S. The 
inner product in £ is denoted (u,v)£. Because A is self-adjoint and strictly 
positive, the bilinear functional (Au,v)£ has all the properties of an inner 
product. Let us denote this inner product by 

(u,v)A = (Au,v)£ 



Some Applications in Mechanics 353 

1 /2 

and its corresponding norm by \\u\\A = {u,u)A' . 
Since £ is incomplete with respect to the new norm we can apply the 

completion theorem. The completion of £ with respect to the norm \\u\\A 

is denoted by £A and is called the energy space of the operator A. But, 
unlike the earlier energy spaces, this energy space for the problems under 
consideration does not relate to the system energy. Looking at the form 
of the inner product in £A for A from the previous section, we see that it 
is an inner product in L2{Vt). Moreover, from the general theory of the 
Lp spaces it is known that infinitely differentiable functions whose support 
is compact in f2 (so they are zero on the boundary of CI) are dense in 
L2(fi). This means the resulting space £A for the problems of the previous 
section is L2(fl) (more precisely, we can put their elements into one-to-one 
correspondence in such a way that all the distances between elements are 
preserved). 

In what follows we need 
Definition 4.11.1 A functional F is called weakly continuous at a point 
u if for any sequence {un} weakly convergent to u we have F(un) —> F(u) 
a s n - » oo. A functional is weakly continuous on a domain M if it is weakly 
continuous at each point u e M. 

By definition a linear weakly continuous functional is continuous, and 
vice versa. 

Lemma 4.11.1 A functional F(u) weakly continuous on the unit ball 
\\u\\e < 1 of a Hilbert space £ takes its minimal and maximal values on this 
ball. 

Proof. This is similar to a classical theorem of calculus on the extremes 
of a continuous function given on a compact set. We prove the statement 
for maxima of F. The result for minima will then follow by consideration 
of —F. Let {un} be a sequence in the unit ball, denoted by B, such that 

F(un) —• sup F(u) as n —> oo. 
Il«ll£<i 

Since {un} lies in B it contains a weakly convergent subsequence {unit}. 
Since B is weakly closed in £ this subsequence has a weak limit u* belonging 
to B. The value F(u*) is finite and since F is weakly continuous we have 

F(unk) - F{u*) = sup F(u), 
IMIe<i 

so u* is the needed point. • 
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Lemma 4.11.2 Let A be a compact linear operator in a Hilbert space £. 
Then F(u) = (Au,u)£ is a weakly continuous functional in £. 

Proof. Let {un} be weakly convergent to u. Consider 

\{Aun,un)£ - (Au,u)£\ = \(Aun,un)£ - {Au,un)E + (Au,un)e - (Au,u)e\ 

< \(Aun,un)e - (Au,un)£\ + \(Au,un)£ - (Au,u)£\ 

< \\A{un - u)\\£ \\un\\£ + \{Au,un - u)E\ 

—• 0 as n —» oo. 

For the first addendum this happened since ||un | |e is bounded and A(un — 
u) —* 0 strongly in £. The second addendum tends to zero since it is a 
linear continuous functional in un — u. • 

For a strictly positive operator all the eigenvalues are nonnegative 
(why?) and so we will denote them as A2: Ax = X2x. This is done to pre
serve the terminology of mechanics, where the corresponding value /J, — 1/A 
is called an eigenfrequency of the object. Now let us formulate the main 
result of this section. 

Theorem 4.11.1 Let A be a self-adjoint, strictly positive, compact oper
ator acting in a real separable Hilbert space. Then 

(i) A has a countable set of eigenfrequencies with no finite limit point; 
(ii) to each eigenfrequency of A there corresponds a finite dimensional set 

of eigenvectors {<fk}l we can choose eigenvectors constituting an or-
thonormal basis; 

(Hi) the union of all orthonormal bases {<fik} corresponding to the eigenfre
quencies of A is orthonormal in £; 

(iv) the same union {<fk} is an orthogonal basis in £A; 
(v) for any u G £ there holds 

oo 

Au = ^2 Ait(u> <Pk)e<Pk, Aifk = Afc<̂ fe. (4.11.1) 
fe=i 

We subdivide the proof into Lemmas 4.11.1 through 4.11.7. Statements 
(i) and (ii) are consequences of the Fredholm-Riesz-Schauder theory of 
compact operators. Statement (iii) is a consequence of the fact that the 
operator A is self-adjoint. So we know some properties of the eigenvalues 
of A, but it remains unknown whether the set of eigenvectors is nonempty. 
First we demonstrate the existence of one such eigenvector. 



Some Applications in Mechanics 355 

Lemma 4.11.3 For a self-adjoint strictly positive compact linear operator 
A acting in £ 

A2 = sup (Au, u)£ 
\W\\£<\ 

is an eigenvalue of A. It is also the largest eigenvalue of A, and the lowest 
eigenfrequency of A is fi\ — 1/X\. 

Proof. If A2 is an eigenvalue then Au — X2u and it follows that 
(Au,u)£ = A2 | |u||£. So for ||u||£ < 1 we have (Au,u)£ < A2, and thus 
all the eigenvalues are non-negative and less than or equal to A2 > 0. Let 
us demonstrate that A2 is an eigenvalue of A. By Lemmas 4.11.1 and 4.11.2 
we know that sup(Au, u)£ is attained on some point ip\ of the ball ||u||£ < 1. 
Since the form (Au,u)£ is homogeneous in u, we know that ip\ belongs to 
the unit sphere ||u||£ = 1: 

Af = (A¥>i,¥>i)e, ||v>i||c = l. 

We show that ipi is an eigenvector of A. It is clear that A2 can be defined as 
the maximum of the form (Au,u)s on the unit sphere ||tt||£ = 1. Because 
of homogeneity the same can be said about the functional 

_,. . (Au,u)£ . . . u .. ., 
G(u) = hntr1 = (^v, v)£, v = l j - r , ||t,||e = I. 

Thus G(u) takes the same set of values as (Au, u)£ on the unit sphere 
||u||£ = 1 and, moreover, it attains its maximal value equal to A2 at the 
same point ip\. Consider G(<fii + aw) for a fixed w £ £. This is a func
tion continuously differentiable in a in some neighborhood of a = 0, and 
attaining its maximum at a = 0. Thus 

dG((fi + aw) 

da 

Calculating this we get 

= 0. 
a=0 

(AVuw)£-
{-^f±(^W)£=0; 

that is, 

(Aipi -\\ipi,w)e = 0 

for arbitrary w S £. This means <pi is an eigenvector and A2 is an eigenvalue 
of A. • 
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Now we are going to describe a procedure for finding other eigenvectors 
and eigenvalues of A, using the established property that the set of all 
eigenvectors of A has an orthonormal basis. We know how to find the first 
eigenvector. For the rest we shall use the procedure whose ith step is as 
follows. Let ipi,..., ipn be mutually orthogonal eigenvectors determined 
by the procedure. Denote by £n± the orthogonal complement in £ of the 
subspace of £ spanned by ipi,... ,<pn. Consider the operator A given on 
£n±- We can repeat the reasoning of Lemma 4.11.3 and find an eigenvalue 
denoted by \n+i and an eigenvector <pn+i of the restriction of A to £„x-
So 

(A(pn+1 - \2
n+1tpn+1,w)£ = 0 (4.11.2) 

holds for any w G £n±. Now we show that this holds for any w G £. By 
the orthogonal decomposition theorem, it is enough to prove that (4.11.2) 
holds when w is any of the previous eigenvectors <pi,... ,<pn. Since for any 
i < n+ 1 

{<Pn+i,<Pi)E = 0 and (A<pn+i,<pi)£ = (<pn+1,A<pi)£ = \i(<pn+1,<pi)£=0, 

it follows that (4.11.2) holds for any w G £. Hence we really did obtain the 
next eigenpair. 

Lemma 4.11.4 For an infinite dimensional space £, the eigenvalues of 
A are countable. The corresponding eigenfrequencies in = 1/Aj, Aj > 0, 
are such that /ij < m+i —* +°° as i —> oo. 

Proof. The above procedure can terminate only when we get some sub-
space £„j_ on the unit ball of which sup(Au, u)£ = 0. But then £n± contains 
only the zero element since A is strictly positive. So £ is finite dimensional, 
a contradiction. The rest of the lemma follows from the method of con
structing the eigenvalues. • 

Lemma 4.11.5 The set of all the constructed eigenvectors < î, ...,</?„,... 
is an orthonormal basis of £. 

Proof. Take any u G £ and consider the remainder of the Fourier series 
n 

un = u-^~2(u,<pk)£<Pk-
fc=l 

We see that (un,<pk)£ = 0 for k < n, and thus un G £n±- From Fourier 
expansion theory we know that \^l=i{u,(pk)c{Pk] is convergent, hence so 
is {un}. Suppose, contrary to the statement of the lemma, that the strong 
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limit of {u„} is uo / 0. By the procedure for finding eigenvalues and the 
fact that un is in £n±, we have 

(Aun,un)£ ^ x2 

\\u •n\\E 

Passage to the limit in n implies 

< 0 : 
(AuQ,U0)£ 

II II2 

hence UQ = 0, and this completes the proof. • 

Lemma 4.11.6 For any u £ £ there holds (4.11.1), i.e., 

oo 

A.u = ^2 Afe(u, <Pk)£<Pk, Aipk = \2
k(pk. 

fc=i 

Proof. The Fourier series u = X^iC^'Vfc)^*; *s strongly convergent. 
Applying a compact (and hence continuous) operator A we get 

oo oo 

A u = ^ ( t t , lfk)£Aifk = ^2 Afc(u> fk)e^k, 
fc=l fe=l 

as required. D 

The last non-proven statement of the theorem follows from 

Lemma 4.11.7 The set ipk = <Pk/^k, Afc > 0, A; = 1,2,3, . . . , is an 
orthonormal basis of SA-

Proof. Mutual orthogonality of the tpk in £A follows from the equality 
chain 

{lpi,lpj)A = {Alpi,1pj)£= (—Aipi,-^-) = T-HVi^jOfi-
\ A j A ? / £ AjAj 

Hence the set is orthonormal as well. For the proof it is enough to demon
strate that for any u € £ Parseval's equality in £A holds. This is shown by 
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the chain of transformations 
/ oo \ oo 

(u,u)A = (Au,u)E = I ^(u, (pk)£A<pk,u J = y^/(u,ipk)£(Aipk,u)l 

\fc=l / s fc=l 
00 / A \ °° 

= 5 2 ( u ' ^ 2 ^ ) (AiPk,u)e = ^2(u, Atpk)£(Atpk,u)£ 

0 0 

fc=l • 

4.12 The Fourier Method, Continued 

We have obtained general results on the structure of the spectrum and the 
properties of the eigenvalue problem for a strictly positive, self-adjoint, com
pact linear operator A. This eigenvalue problem includes all the eigenvalue 
problems of linear mechanics that we have considered. 

In § 4.9 we began to study the Fourier method for dynamical linear 
problems. We tried to find a general solution of a general linear initial-
boundary value problem for a body free of external load. However, the fact 
that the eigenvectors of A, satisfying 

JQ 

constitute an orthogonal basis in S and 8A simultaneously, allows us to 
consider the problem for a loaded body as well. Here the Fourier method 
appears to relate to the Faedo-Galerkin method for a special basis, namely 
for the eigenvectors of the operator A which is now well defined by the 
relation (4.10.7). Let us recall that for the basis 

(<Pi,<Pj)e =&ij = < ' , ' (pi(x)<pj(x)dn = \?6ij. (4.12.1) 
[0, ijtj, Ja 

Let us review the general notations of this section. In £(0,T) an inner 
product is defined as 

(U,V){O,T] = / {u,v)£dt+ / / u(x,t)v(x,t)d£ldt 
Jo Jo JQ 

(changing the dimensions we put p = 1) and D^ denotes the subspace that 
is the completion of that subset of the base of £(0, T) which are equal to 
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zero at t = T. A generalized solution u G £(0, T) is denned by 

/ (u,v)£dt= f(x,t)v(x,t)<mdt+ I u{-K,t)v(x.,t)drtdt 
Jo Jo JQ JO Jn 

+ I ul(x)v(x,0)dn (4.12.2) 
Jn 

for any v G D"Q. Note that the initial condition for the first time derivative, 
that is u j , is taken into account in (4.12.2); we do not require it to hold 
separately. Another initial condition 

u ( x >*) | t = 0 = uo( x ) 

must be satisfied in the sense of L2(n); see Definition 4.7.1. The boundary 
conditions are hidden inside the definition of £. We recall that we require 
uS(x) G £, u\{-x.) G £A, / (x , t ) G L 2(0 x [0,T]). Now we return to the 
Faedo-Galerkin method with the basis elements ipk, k = 1,2,..., that are 
eigenvectors of A with the properties we studied earlier. Let us seek the 
nth Faedo-Galerkin approximation un = X]fe=i ck(t)<Pk to the generalized 
solution given by the equations 

Ci(t) / <Pi(x)df2 = -(<pi,ipi)eci(t)+ / /(x,t)(pi(x)dft, 
Jn Jn 

or, because of (4.12.1), 

Ci{t) + HiCi(t) = fi(t), m = 1/Ai, i = l , . . . , 

where 

fi(t)=fi2i / " / ( x , i ) ^ ( x ) 
JQ 

(4.12.3) 

(4.12.4) 

dfl 

and eigenfrequencies /ij = 1/Ai —* oo. We see that equations (4.12.4) 
are mutually independent. Let us derive the initial conditions for these 
equations. Denoting Cj(0) = dot, Ci(0) = du, and remembering that doj are 
defined by 

y-o - 7ydok(pk 

fe=i 
mm 

we get 

doi(ifi,iPi)£ = {uQ,ipi)£ 
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SO 

c»(0) = d0i = (uo,ipi)e = (uo,fiiA(pi)£ = m / ul(x.)tpi{-x.) dSl. (4.12.5) 
Jn 

Similarly, minimizing 

u\ -^dikipk 

fc=i 
mm 

we obtain 

or 

dli(tpi,<Pi)A = (<£»,"*) A 

Ci(0) = du = Mi(Vi,«I)yi = M? / «I(x)Vi(x)cfn (4.12.6) 
./n 

so we see that the initial conditions are split as well. Because of the mutual 
orthogonality and basis properties of {<fi} in £ and SA we can rewrite the 
corresponding Parseval equalities 

£ 4 = IK 
i=\ 

and 

53dii(Vi.vOA = ^diiA? = Klfc. 

(4.12.7) 

(4.12.8) 
i = l 

The solution of the problem (4.12.4), (4.12.5), (4.12.6) is 

1 / • ' 

Ci(i) = d0i cos(/x»i) + du sin(/^i) H / / , ( r ) sin//j(i - r ) dr. 
Mi Jo 

It is easily seen that ci{t) is continuously differentiable on [0, T\. Note that 
unlike the case of general complete system of basis elements the coefficients 
of the Faedo-Galerkin method do not depend on the number of the step. 
Let us see the behavior of corresponding partial sums of formal series 

i = l 

+ 

u(x, 0 = X/ ( doi cos(/ /* t) + du sin(jUji) 

— f /i(T) s i n ^ ( t - T j d T J ^ x ) . (4.12.9) 
Mi JO J 
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Let us note that the part 

u(x, t) = ^2 (dm cos(/ijt) + du sin(nit)) <^,(x) 
z = i 

is a formal solution for the dynamic problem for a load-free elastic body by 
the Fourier method. From the above we know these partial sums weakly 
converge to a generalized solution of the dynamic problem. So in a certain 
way u(x, t) given formally by (4.12.9) is this solution. We will establish the 
properties of the series (4.12.9) and thus those of the generalized solution. 

Let us consider the convergence of series (4.12.9). For this multiply the 
identity (4.12.3) term by term by Ci(t) and then sum up the equalities in i: 

n p n 

V]cj(i)ci(t) / (p1(x)cin + 'y]ci(t)ci(t)(ipi,<pi 
< = 1 JQ i = l 

= J] / f(x,t)6i(t)<pi(x)dn 
i=lJn 

ld_ 
2dt 

f n „ n \ 

^c?(i)y^^(x)dn + ^cf(i)(^,^J 

= Jj(*,t) rtciit)^)] da. 

Note that we are repeating the way in which the estimate of the Faedo-
Galerkin approximation was obtained. So redenoting t by r and integrating 
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the last equality in r over [0, t] we get 

|(E^wj[/?(x)dfi + E^wfo^) 
= \ (Ecf(0)^^(x)dn + ^ c 2 ( 0 ) ( ^.^ . ) £ j 

+ j * J / ( x , r ) (j2ci(r)ipi(K)\ dQdr 

2
 i = i Jo Jn 

= J E K A ? + <&) + r / ' / / 2 (x , r) dfi dr 
2 £i Jo Jn 

+ ffjf £««(/„«*«*)'*• 
Here we used the elementary inequality |a6| < a2/(4T) + T62 and mutual 
orthogonality of the tpi in £A = L2{Q). Taking maximum values on [0,T] 
in the last inequalities we get 

2 te[o,T] y ^ j Q .= 1 y 

< J E ( « + 4 ) + T f [ / 2 (x , r) dn dr A ~[ Jo Jn 

+ ±-T max YC^T) ( I < ^ ( x ) d ^ 
4T rG[0,T]^ V ^ , 

so 

5 " J n ^ l l ^ E ^ W / v ? ( X ) d n + E ^ ( * ) ( ^ > V « ) f i ) 
2te[o,T] \ ^ 2 . = 1 J n .= 1 y 

< j E ( 4 A 2 + 4 ) + ^ / T / " / 2 ( x , r ) d Q d r . (4.12.10) 
z
 i = 1 ./o Jn 
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The right-hand side of (4.12.10), because of (4.12.7) and (4.12.8), is 
bounded by a some constant M independent of n. Because of the proper
ties of orthogonality of the basis elements and the form of the norm of a 
partial sum for series (4.12.9) that is Mn(x, t) = X ^ i ci(0vpi(x) w e have 
that the sequence {un} converges in C(£;0,T) and {dun/dt} converges in 
C{£A;0,T) = C(L2(Q);0,T). Thus the series (4.12.9), which is also a gen
eralized solution to the problem under consideration, belongs to C(£; 0, T), 
whereas its time derivative du/dt belongs to C(£A',0,T). Simultaneously 
we justified convergence of the Fourier method for a free-load dynamical 
problem for an elastic body. We note that assuming existence of time 
derivatives of the force term / , in the same manner we can demonstrate 
that the solution has additional time derivatives. Moreover, for the free-
load case we can demonstrate that the time derivative of any order of the 
solution is in C(£A',0,T). 

4.13 Equilibrium of a von Karman Plate 

So far we have considered only linear problems of mechanics. Of course, 
such problems represent only the simplest approximations of the actual 
objects and processes of nature: although weakly nonlinear processes can 
often be analyzed with sufficient accuracy through the use of linear models, 
many important physical effects are inherently nonlinear. It is fortunate 
that the speed of machine computation has increased to the point where 
more realistic simulations of such effects have become possible. But the 
availability of numerical methods has also underscored the importance of 
analytical considerations. To work effectively we must know whether a 
solution exists and to which class of functions it belongs. We should also 
understand the differences between various methods of numerical solution 
and be prepared to place rigorous bounds on the error. 

An important nonlinear problem, and one that can be regarded as a 
touchstone for many numerical methods, is the problem of equilibrium of 
a thin elastic plate under transverse load q. The plate is described by two 
nonlinear equations, 

DA2w = [/, w] + q, (4.13.1) 

A2f = -[w,w], (4.13.2) 

given over a 2-D region f2 that represents the mid-surface of the plate. Here 
w = w(x, y) is the transverse displacement of a point (x, y) of the mid-
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surface, / = f{x,y) is the Airy stress function, D is the rigidity coefficient 
of the plate, and the notation [u, v] is defined by 

[11) V\ = UXXVxX 1 UyyVyy CliXyVXy 

where the subscripts x and y denote the partial derivatives d/dx and d/dy, 
respectively. With suitably chosen dimensionless variables we can get D = 
1. We shall consider the problem with the boundary conditions 

l n dw 
(4.13.3) 

on 

and 

Conditions (4.13.3) mean that the edge of the plate is fixed against trans
verse displacement and rotation, and (4.13.4) means that the lateral bound
ary is not subjected to tangential load. In mechanics, condition (4.13.4) is 
derived for a simply connected domain. As usual we consider the domain 17 
to be compact and to have a piecewise smooth boundary so that Sobolev's 
imbedding theorem for W2,2 (fi) is applicable. If we neglect the term [/, w] 
in (4.13.1), we get the linear equation of equilibrium of a plate under trans
verse load as was considered in Chapter 3. We would like to apply the tools 
of generalized setup of mechanical problems. Let us begin with the pair of 
integro-differential equations 

a(w, C) = B(f, w, C) + f qQ cm, (4.13.5) 

a(f,rj) = -B(w,w,r,), (4.13.6) 

where 

a(u, V) = / (UXX (VXX + /J,Vyy) + 2 ( 1 - li)UXyVXy + Uyy (Vyy + fiVXX)) ClQ,, 

II is Poisson's ratio for the material, 0 < /J < 1/2, and 

B(U,V,ip) = / ((UXyVy - UyyVX) tpx + (UxyVX - UXXVy) <Py) <]£l. 

Jn 
From a variational perspective, (4.13.5) and (4.13.6) would appear to con
stitute the first variation of some functional; we could regard £ and r) as 
arbitrary admissible smooth variations of w and / . Because such a view
point would bring us back to (4.13.1) and (4.13.2), we could try (4.13.5) and 
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(4.13.6) as equations appropriate for the generalized setup. There may be 
other forms of the bilinear functional a(u, v) that yield the same equations 
(4.13.1) and (4.13.2) as a consequence of the variational technique; however, 
for other types of boundary conditions that differ from (4.13.3) this would 
lead us to incorrect natural boundary conditions. If we wish to consider 
boundary conditions for / including tangential load, then we need to take 
a different form of the left-hand side in (4.13.6) (see, for example, Vorovich 
[Vorovich (1999)]). But for conditions (4.13.4) we can forget about the 
physical meaning of the Airy function and use the same form of a{u, v) in 
the generalized equation. Thus we are going to use (4.13.5) and (4.13.6) for 
the generalized setup of the equilibrium problem for von Karman's plate. 
Our experience with the linear equilibrium problem for a plate suggests 
that we exploit the form a(u, v) as an inner product in "energy" spaces for 
w and / . This means, by the results for a linear plate, that the solution will 
be sought in the subspace of W2'2(il) consisting of the functions satisfying 
the boundary conditions (4.13.3). We need to see whether all the terms of 
(4.13.5) and (4.13.6) are sensible when all the functions included therein 
reside in the energy spaces (note that we now consider dimensionless ver
sions of the equations). Of course, we need to suppose q satisfies at least 
the same conditions as for the generalized setup of the corresponding linear 
plate problem. For definiteness, let q € L(fl). We will check that the other 
terms in the equations are sensible. It is necessary to consider only the 
trilinear form B(u,v,w). Apply Holder's inequality for three functions to 
a typical term: 

I uxxvywxdVt <( J u2
xxdn\ ( J v*<m\ ( J w4

xdn\ 

<m\\u\\P\\v\\P\\w\\P, (4.13.7) 

where we have used the fact that in £pc the norm 

IIHIp = (a(w>w)) 
is equivalent to the norm of W2,2{Q) and elements of W2>2{Q) have the 
first derivatives belonging to Lp(fi) with any finite p > 1, in particular for 
p = 4, which is necessary in Holder's inequality. So all the terms of the 
equations have sense in the energy space. Thus, we can state the following 
definition: 

Definition 4.13.1 A generalized solution to the equilibrium problem is 
a pair w, f that belongs to £pc x £pc and satisfies (4.13.5)-(4.13.6) for any 
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C,ry from Spc-

Equation (4.13.6) is linear in / . Using this we will eliminate / from the 
explicit statement of the problem. The right-hand side of (4.13.6) is linear 
in 77; estimates of the type (4.13.7) give us 

\B(w,w,r,)\<m\\w\\P\\rj\\p. (4-13.8) 

This means B{w,w,rj) is continuous in 77 so we can apply the Riesz repre
sentation theorem and state that for any fixed w £ £pc 

-B(w, w, 77) = (C, n)P = a(C, 77). (4.13.9) 

This C € £pc, uniquely denned by w, is considered as the value of an 
operator in £pc at w: C = C(w). Then (4.13.6) is rewritten as 

a{f,v) = a{C(w),r]) 

and thus / = C(w). We will make further use of this. 
Let us call a nonlinear operator in a Hilbert space completely continuous 

if it takes any weakly Cauchy sequence into a strongly Cauchy sequence. 

Lemma 4.13.1 The operator C(w) is completely continuous in £pc. 

The proof is based on the elementary property of the trilinear form 
B(u,v,w), as given in the following lemma. 

Lemma 4.13.2 For u,v,w £ £pc, there hold the following properties of 
symmetry: 

B(u,v,w) = B(w,u,v) = B(v,w,u) = B(v,u,w) 

= B{w, v, u) = B{u, w, v). (4.13.10) 

Proof. We introduced the energy spaces as completions of the sets of 
functions satisfying appropriate boundary conditions and having all the 
continuous derivatives (in this case up to second order) that are included 
in the form of the energy of the body. However, the set of infinitely differ-
entiable functions is dense in subspaces of C^k\Q), and this means we can 
use it as a base to get a corresponding energy space (in other words, among 
representative Cauchy sequences of an element of an energy space there are 
those which consist of infinitely differentiable functions only). The validity 
of relations (4.13.10) is verified by direct integration by parts for functions 
u,v,w having all the third continuous derivatives (they cancel mutually 
after transformations). Taking then representative Cauchy sequences for 
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elements u, v, w of £pc that have infinitely differentiable members we get 
the needed property by the limit passage in the equalities (4.13.10) written 
for the members. Equation (4.13.8) justifies the limit passage. • 

Proof. (For Lemma 4.13.1). By (4.13.10) and definition (4.13.9), for any 
T] 6 £pc we have 

(C(w),r))p = -B(w,w,T]) = -B(rj,w,w). (4.13.11) 

Let {wn} be a weakly Cauchy sequence in £pc and thus ||wn | |p < co with 
Co independent of n. We must show that {C(wn)} is a strongly Cauchy 
sequence. From (4.13.11) it follows that 

\(C(wn+m) - C{wn),rj)P\ = \B(r], ) - B(r],wn,wn)\. 
(4.13.12) 

Consider a typical pair of corresponding members of the right-hand side of 
this: 

/ Vxx(wn+mwn+mx-wnywnx)d$l 
JQ 

wn+mx - wn+m wnx + wn+mywnx - wnywnx) dQ, 
Ja 

^ I Vxx^n-\-my\^n+mx 

- wnx)dQ\ + / (Wn+my ~ Wny) dil 
Jn Jn 

Applying Holder's inequality to each term on the right as in (4.13.7), we 
have 

/ Vxx(Wn+myWn+mx - WnyWnx) dQ 
m 

< ( / 7]2
XX dfl J ( wn+my dn) ( (wn+m.x - « w ) 4 dQ, 

1/2 / , \ 1/4 / f \ 1/4 
r?xxd£l) [ J wni dQ I rgx dSlj (I wnx dn) (I (wn+my - wny)

4 dO. 

< M\\T]\\PCQ I \\wn+mx -wnx\\Li{n) + 'n+my ^ny 
L4(Q) 

with a constant M defined by the imbedding theorem for £pc. Doing this 
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for each of corresponding pair in the right-hand side of (4.13.12) we get 

\{C(wn+m) - C(wn),T))P\ 

< Mi |M|p (JK +mx
 wnx\\Li(n) ~^~ 

Putting T] = C(wn+m) - C(wn) we get 

\(C(wn+m) - C(wn), C(wn+m) - C(wn))P 

<M1\\C(wn+m)-C{wn)\\P 

\wn+mx-Wnx\\ |L4(n) 

"Wn+my 1Vny 
L4(n) 

Wn+m.y wny 
L"(fi) 

or 

\\C{wn+m) -C(wn)\\P 

< Mi (\\wn+mx-wnx\\L4{Q) + ^n+m-ii W. ny L4(Q) 
(4.13.13) 

But by Sobolev's imbedding theorem for W2>2{Q) that is applicable to its 
subspace £pc, we have that for a sequence {wn} weakly convergent in £pc, 

\\wn+mx
 wnx\\Li(n) + ^n+rriy ^ny 

L4(fi) 
0 as n —• oo. 

This implies the needed statement of the lemma: 

\\C(wn+m) - C(wn) 0 as n —» oo. 
n 

Now we return to the generalized setup of the problem and eliminate 
/ = C(w) from the statement. Then (4.13.5)-(4.13.6) reduce to the single 
equation 

(w, C)P = B(C(w), w, C) + f q(dfi. (4.13.14) 

Let us present (4.13.14) in operator form. Consider the right-hand side of 
(4.13.14), B(C(w),w,C) + JnlCdQ, as a functional in C at a fixed w. It is 
linear in £. Next we get 

B(C(w),w,C)+ I qC,dSl < m i | | C M | | P H | P | | C | | P + max|C| / \l\^ 
Jn il

 JQ 

< m2 HCIIP 
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where we have used a consequence of inequality (4.13.7), the inequality 

IICHIIP^MJIHIP 

that can be obtained in the same fashion as (4.13.13) with use of Sobolev's 
imbedding theorem in W2,2(Q,). This means B(C(w), w, C) + JQ q(, dQ, is a 
continuous linear functional in £ £ £pc. Applying the Riesz representation 
theorem we get 

B(C{w),w,Q+ [ q(da = (GX)p 
Jo, 

where G e £pc is uniquely defined by w S £pc. Thus G can be considered as 
the result of an operator G — G{w) acting in £pc. Then (4.13.14) becomes 

( » , ( ) P = ( G H , C ) P 

and so, because of the arbitrariness of £ £ £pc, we get an operator equation 

w = G(w) (4.13.15) 

where G is a nonlinear operator in £pc. Let us establish the properties of 
G. 

Lemma 4.13.3 The operator G is completely continuous in £pc; that is, 
it takes any weakly Cauchy sequence into a strongly Cauchy sequence. 

The proof practically repeats all the steps of the proof of Lemma 4.13.1 
(in fact it is easier since C is a completely continuous operator) so we leave 
it to the reader. 

To use the tools of the calculus of variations we should present (4.13.15) 
as the equality of the first variation of some functional to zero. As we will 
see, the functional we mean is 

F(w) = ^a(w,w) + \a(C{w),C{w)) - f qwdQ. (4.13.16) 

Let us introduce 

Definition 4.13.2 Suppose a functional $ at point a: in a real Hilbert 
space H can be represented as 

$(x + y)- *(a:) = (K(x), y)H + o(\\y\\H) (4.13.17) 

for any y, \\y\\H < e with some small e > 0. The correspondence from x to 
K(x) is called the gradient of $ and is denoted as grad$(x) = K{x). 
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The reader sees that this is a way of representation of the first variation 
of a functional in a real Hilbert space which was the central point of the 
first chapter. In many cases, the main term of the representation can be 
found by formal differentiation in a parameter t: 

(K(x),y)H = jt$(x + ty) (4.13.18) 
t=o 

2 For example, the gradient of the functional | \\x\\H is the identity operator. 
Indeed, 

Jt y^{x + ty,x + ty)^ 
t = 0 

The reader can check this by direct calculation according to Defini
tion 4.13.2. As in Chapter 1, we have 

Lemma 4.13.4 Suppose a functional 3>(x) has at any point x of a real 
Hilbert space H a continuous gradient K(x). If <&{x) attains a minimum 
at XQ, then K(xo) = 0. 

Proof. For any fixed y and small t, by (4.13.17) we have 

0 < $(x0 + ty) - * ( i 0 ) = t{K{x0),y)H + o(\t\). 

From this inequality we conclude, as is standard reasoning for Chapter 1, 
that (K(xo),y)u = 0. Hence K(xo) = 0 by the arbitrariness of y. • 

Note that we derived a version of the Euler equation for an abstract 
functional. The points x at which K(x) — 0 are called critical points of 
$(x). Thus points of minimum of a smooth functional i> are its critical 
points. Let us apply this to our equation. 

Theorem 4.13.1 Let q G L(Q). There exists a generalized solution 
wo,fo S £pc to the equilibrium problem for von Kdrmdn's plate with bound
ary conditions (4.13.3), (4.13.4). The element WQ is a point of minimum 
of the functional F(w) defined by (4.13.16). 

We present the proof as several lemmas. 

Lemma 4.13.5 At any w S £pc we have 

gradF(w) = w — G(w). 
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Proof. Let us consider F(w + ££) at any fixed i u , ( 6 £pc. In t this is a 
simple polynomial so we can define gradi** by (4.13.18). Consider 

dl 
F(w + tC) 

t=o 

= l G a ( w + i c ' u ; + i c ) 

+ ia(C(w + tC), C(w + tQ) - f q(w + tQ 
4 J si 

dQ, 

t-o 

= a(w,w) + -al ,C{w)J -JqC,dQ.. 

(4.13.19) 

From (4.13.11) with use of symmetry of its right-hand side in w we have 

d 
a , ' * 7 ^ , , 

dt t=o dt 
B{r},w + t£,w + tO -2B(ri,w,Q. 

t=o 

So 

a | — dt
 s',C{w) =-2B(C(w),w,C). 

t=o 

Combining this with (4.13.19) we get 

d 
dt 

F(w + tC) = a(w,0-B(C(w),w,0- [ qC 
t=o J si 

= (W-G(W),OP, 

dQ 

D which completes the proof. 

Prom this and the above we get 

Lemma 4.13.6 Any critical point w in £pc of functional F given by 
(4.13.16) implies the pair w, f = C(w) is a generalized solution of the prob
lem under consideration. 

Now we are going to show that there is a point at which F(w) attains 
its minimum. First we note that this minimum point is in a ball centered 
at the origin whose radius is defined only by the load q. This follows from 
the inequality chain 

2F(w) > a(w, w)-2 J 
JSl 

qwaTL 

> \\w\\p — 2max|u;| 

> iHip-MoHlp, 

\q\dO. 

(4.13.20) 

file:///q/dO
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where the constant Mo is defined by the norm of q in L(Q) and the norm 
of the imbedding operator from £pc to C(Q,). Since F(0) = 0 and outside 
of the sphere \\w\\p = Mo + 1 we have F(w) > Mo + 1 and thus 

Lemma 4.13.7 / / there is a minimum point of the functional F, then it 
belongs to the ball \\w\\p < Mo + 1. Moreover, the functional F is growing 
in £pc; that is, F(w) —> oo when \\w\\p —* oo. 

The fact that F is a growing functional follows immediately from in
equality (4.13.20). Now we need to prove that F attains its limit point. 

Lemma 4.13.8 The functional $(w) = ^a(C(w),C(w)) — fnqwd£l is 
weakly continuous in £pc, thus the functional F(w) is represented as 

FH = \ H I P + * H 

with a weakly continuous functional $ . 

Proof. Evident since J"n qw dCl is a continuous linear functional and C is 
a completely continuous operator. • 

The proof of Theorem 4.13.1 is completed by the following result due 
to Tsitlanadze: 

Theorem 4.13.2 Let f(x) be a growing functional in a Hilbert space H 
that has the form 

f(x) = \\x\\2
H + <p(x) 

where tp(x) is a weakly continuous functional in II. Then 

(i) there is a point XQ at which f(x) attains its absolute minimum, f(xo) < 

f(x) for any x G H; 
(ii) any sequence {xn} minimizing f, that is limn_oo f{xn) = f(xo), con

tains a subsequence that strongly converges to XQ. 

Proof. On any ball <p(x) is bounded and thus f(x) is bounded as well. 
Because f{x) is growing we state that a possible minimum point is inside a 
closed ball B of a radius R. Let a be the infimum of values of f(x). Then 

inf f(x) = inf fix) = a. 

Take a minimizing sequence {xn} of / . We can consider it is inside B and 
thus contains a weakly convergent subsequence that we redenote by {xn} 
again. Without loss of generality, we can consider the sequence of norms 
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of xn to converge to b, such that b < R. Since a closed ball centered at the 
origin is weakly closed we get that {xn} converges weakly to an element 
XQ G B. It is enough to show now that {xn} converges strongly to XQ. 
We know that if for a weak Cauchy sequence the sequence of norms of the 
elements converges to the norm of the weak limit element then it converges 
strongly. Thus we need to demonstrate only that ||xo||# = b. Let us show 
this. It is clear that 

\\*o\\H < b. 

Indeed, because of weak convergence of {xn} to xo we have 

| |x0 | |^ = lim (xn,x0)H < \\xo\\H
 l i m \\xn\\H = b \\x0\\H . 

n—>oo n—>oo 

Next, because of weak continuity of <p we have lim™-,,^ <p(xn) = ip(xo) and 
thus 

a= lim f(xn)= lim (\\xn\\
2

H + f{xn)) = b2 + ip(x0). 
n—»oo n—*oo \ / 

But 

f(x0) = \\x0fH + <p(x0) > a 

s o
 II^OIIH ^ b2 which means that ||xo||H = b. All statements of the theorem 

are proven. • 

By this theorem the proof of Theorem 4.13.1 is also completed. Note 
that Theorem 4.13.2 prepared everything to formulate the theorem on con
vergence of the Ritz approximations to a generalized solution of the problem 
under consideration. We leave this to the reader. 

4.14 A Unilateral Problem 

Now let us consider a simple problem of deformation of a membrane con
strained by a surface underneath it. During deformation, the membrane 
cannot penetrate through this surface. This problem belongs to the class 
of unilateral problems, and can be formulated as a problem involving a so-
called variational inequality. By this approach we obtain problems with 
free boundaries; i.e., the boundary of the domain over which some equa
tions are applicable is determined during solution, not in advance. Our 
previous use of the term "free" indicated a lack of geometrical constraints 
on the displacements, whereas for this problem there is an obstacle and the 
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border of contact between this obstacle and the membrane is undetermined 
(free). Now we begin. 

Consider a membrane under load / occupying a compact domain ft 
with clamped edge. Let us suppose that "under" the membrane there is 
an obstacle described by a function ip = ip(x, y) such that the points of the 
membrane cannot go through this surface: 

u(x,y)>(p{x,y) (4.14.1) 

for all (x, y) 6 Cl. We will suppose that the clamped edge of the membrane 
is described by 

u\dn = a(s). (4.14.2) 

Of course we should suppose some compatibility between the boundary 
condition and the obstacle; that is, on the boundary we should have 

<p\m < a(s). (4.14.3) 

We wish to find a solution to this problem. First of all it is clear that now it 
can appear a domain in which the membrane "lays" on the obstacle (p. This 
set is called the coincidence set since on this set the membrane takes the 
form of the obstacle. It is clear mechanically that on the coincidence set the 
membrane equation should not be applied (in fact the equation holds but 
it contains an unknown force reaction of the obstacle) whereas outside the 
coincidence set it should be applied. Mechanical considerations normally 
work quite well; however, in this case we do not yet know how to define the 
coincidence set, its border, or the conditions for a solution on the latter. 

Classical setup of the problem 

Let us try to use the tools of calculus of variations to determine these. 
We would like to obtain a classical statement of the problem, hence we 
suppose that all the functions we will use are sufficiently smooth. Since the 
mechanics of this problem guarantees the applicability of the principle of 
minimum of total energy, a solution is a minimizer of the energy functional 

™-U((l)'+(£)>-/0'-« 
over the set of functions satisfying (4.14.1) and (4.14.2). Let us suppose 
there is a solution of this problem belonging to C^2'(f2), so we will find 
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equations for a minimizer over the subset of C^2' (Q) consisting of functions 
satisfying (4.14.1) and (4.14.2). We denote this subset by Cv. Note that we 
must assume <p € C^(Cl) as well. Later we will "forget" this requirement. 
Thus we need to find equations governing a minimizer u G Cv of F(u) over 
Cv. It is clear that the set Cv is convex in C^(Cl), which means that if u\ 
and it2 belong to Cv then for any t G [0,1] we have (1 — t)u\ + tu-x G Cv. 
Let us take an arbitrary v G Cv. Because of convexity of Cv we see that 
u + t(v — u) = (1 — t)u + tv belongs to Cv for any t e [0,1] as well. So by 
the principle of minimum of total energy we have 

F(u + t(v - u)) > F(u) 

for any v € Cv and t G [0,1]. Remembering the notation 

. . f I' dudv du dv \ , 
(tt-w)jl' = yn(&& + ^ 5 j ; j d n (4-14-4) 

we have 

1 1 /" 
- (u + t(u - u),u + t(v — U))M — -(U,U)M — t f(v - u)dfl > 0 
2 2 JQ 2 

or 

t (u ,v-u)M - / f(v-u)dQ, 
Jo. 

+ -t2(v-u,v-u)M >0 (4.14.5) 

for any t G [0,1]. This implies that for a fixed v the coefficient at t must 
be nonnegative: 

(u, v-u)M- I f(v -u)dn> 0. (4.14.6) 
Jo. 

Indeed if we suppose this coefficient is negative then choosing sufficiently 
small t we get that (4.14.5) is not fulfilled since t2 tends to zero faster than 
t when t —> 0. Hence a minimizer u must satisfy (4.14.6) for any v G 0<p. 
Such inequalities are called variational inequalities. Denote rj = v — u. It 
is clear that on the boundary 

T, | f i n=0. (4.14.7) 

Then (4.14.6) takes the form 

{U,V)M~ [ fri<Kl>0. (4.14.8) 
Jo. 
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We see that on the left side of (4.14.8) there is the first variation of func
tional F with virtual displacement TJ. In the calculus of variations, from 
(4.14.8) we stated that the first variation is equal to zero for any rj. This 
was done because rj was sufficiently arbitrary; this time, however, we have 
r; > 0 on the coincidence set for u, so we cannot use the trick involving a 
sign change on T] in order to obtain an equality in (4.14.8). Let us derive 
the differential equations from (4.14.8). Traditional integration by parts 
with regard for (4.14.7) yields 

/ 
Jn 

( - A u - / ) 7 / d n > 0 . (4.14.9) 

If we restrict the support of r\ to the coincidence set of u denoted by Qv, 
all we get from this is 

- A u - / > 0 

inside Ov . This means that on Qv there is a reaction of the supporting 
obstacle applied to the membrane. Recall that on the coincidence set we 
have u = tp. We consider u to be of the class of C^(fl), and thus on the 
boundary of Qv that we denote by Tv we have that all the first derivatives 
of u and ip are equal: 

V ( « - V ) l r v = ° -
This is the equation we can use to determine the position of Tv. Let consider 
what happens outside of the coincidence set ilv. Here the only restriction 
for r\ is some smallness of its negative values. For sufficiently small rj with 
compact support lying in fi\fiv we have equality to zero in (4.14.9). Thus 
the usual tools of the calculus of variations imply that in f2\Q¥, there holds 
the Poisson equation 

Au = - / 

as was expected above from mechanical considerations. Let us summarize 
the setup of the problem: 

Au = —f on nyn^,, 
Au + / < 0, u = if on il,p, 

V(u - tp) = 0 on Tv , 

u = a o n dQ. 
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We can write out the equations of equilibrium on !T2 as 

(Au + f)(u-tp) = 0 i n f i . 

Generalized setup 

It is difficult to prove the existence of a classical solution to the above 
problem. When the coincidence set is of complex shape or the load is non-
smooth, the energy approach to the solution is quite appropriate. For the 
setup of the problem we shall use an energy space where the elements are 
sets of equivalent Cauchy sequences, so we need to explain the meaning of 
inequality (4.14.1). We begin with the inequality u(x,y) > 0. We say that 
u(x,y) > 0, u G W1,2(fl), if there is a representative Cauchy sequence of 
u(x,y) such that each of its terms un(x,y) > 0. We say that u(x,y) > 
ip(x,y) if u(x,y) — tp(x,y) > 0. If p(x,y) G W1,2(fi), then the set of 
functions u(x,y) > <p(x,y) is closed in W1'2(Cl) and in any closed subspace 
of this space. Let us assume that the obstacle function ip(x,y) G W1,2(Cl) 
and satisfies (4.14.3). Now we need to find a minimizer u = u(x,y) G 
W1,2(fi) of 

™-U((i)'+(£)>-i>*1 

over a subset Wv of elements of Wl,2{VL) satisfying 

u\dQ = a{s) 

and 

u(x,y) > (p(x,y). 

This minimizer is called a generalized solution of the unilateral problem for 
the clamped membrane. We suppose ip G W1'2(Q.) and / € Lp(fl) for some 
p > 1. In this case the problem of minimization of F(u) over Wv is well 
defined. In the same manner as above we get that a minimizer u G Wv 

satisfies the variational inequality (4.14.6) for all v G Wv. We would like to 
reduce the problem to the case we have studied. Let us assume there is an 
element g = g{x,y) G WX'2(Q) that satisfies the same boundary condition 
as a solution, 

g(x,y)\ga = a(8), (4.14.10) 
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and introduce another unknown function w by the equality 

u = w + g. 

From the properties of u it follows that 

We see that w € Wl,2{Q) and thus w 6 £MC- TO formulate the setup of the 
problem in terms of w, it is clear that w should satisfy 

w(x,y)><p(x,y)-g(x,y). (4.14.11) 

Let us denote the subset of £MC consisting of elements satisfying (4.14.11) 
by W^-g. The functional F(u) reduces to the functional 

Since / and g are fixed, the problem of minimization of F(u) becomes the 
problem of minimization of functional 

over the set W^-g. 
Let us formulate the problem explicitly: given <fi:g & Wl'2{Q) such that 

(4.14.10) and (4.14.3) are valid, find a minimizer of $(w) over Wv-g. 
Using the notation (4.14.4) we can rewrite the expression for $(w) as 

^(w) =-{w + g,w + g)M - / fwdSl. 

Let w* be a minimizer of <&(w) over W^-g. We repeat reasoning with which 
we derived (4.14.6), namely, let us fix an arbitrary w e Wv-g. Then 

$(w*+t(w-w*)) >3>(w*) 

for any t € [0,1]. For such t it follows that 

-(w* +t(w-w*)+ g, w* +t(w-w*)+ g)M 

--{w* +g,w*+g)M-t I f(w-w*)dQ>0 
1 Ju 
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or 

t< (w*,w - w*)M + (g,w- w*)M - / f(w -w*)dQ.> 

+-t2(w — w*,w - W*)M > 0. 

Since this holds for any t £ [0,1] we conclude that the coefficient of t must 
be non-negative: 

(w' ',W-W*)M> / f(w-w*)d£l-(g,w-w*)M 

for all w 6 Wv-g. This is a necessary condition for w* to be a minimizer 
of $(u;) over Wv-g. 

Theorem 4.14.1 There exists a generalized solution to the unilateral 
problem for the membrane with clamped edge, it is the only minimizer w* 
of Q(w) overWv-g. 

Proof. Let us show uniqueness of the minimizer w*. Suppose to the 
contrary that there are two minimizers w\ and w^- Then 

(w*,w-w*)M > / f(w-w*)dQ.-(g,w-w*)M-
Jn 

We put w = W2 in the inequality for w\ and w = w\ in the inequality for 
w\\ adding the results we get 

(u>l -u>2,u>2 -u>l)M > 0, 

which is possible only when w\ = w^ since w* G £MC-
Now let us show existence of a minimizer of $(w). It is clear that Q(w) 

is bounded from below on Wv-g (why?). Let d = inf $(ty) over Wv-g, and 
let {wn} be a minimizing sequence for $(u;) in Wv-g: 

§(w„) —• d as n —+ co. 

Now we show that {wn} is a Cauchy sequence. Indeed, consider 

(wn - wm, wn - wm)M = 2(wn, wn)M + 2(wm, wm)M 

i +U>m) 

(4.14.12) 

' 4 ( o (wn + wm), 7,{wn + Wm) 
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An elementary transformation shows that 

2(wn,Wn)M +2(wm,Wm)M ~ 4 (-{wn + Wm),-(wn + Wm) J 

= 4$(wn) + 4$(wm) - 8$ ( -(to„ + wm) ) • 

(4.14.13) 

Next Q(wn) = d + en where en —* 0 as n —> oo. Because W^-g is convex 
the element | ( tun + wm) belongs to W^-p, so <fr (5(^71 + t»m)) > d, hence 
(4.14.12)-(4.14.13) imply 

(w;„ -wm,wn -wm)M < 2(d + en) + 2(d + sm) -Ad 

= 2(en + em) —* 0 as n, m —> 00. 

This completes the proof. • 

We have proved solvability of a unilateral problem for a clamped mem
brane. Since all the problems we considered for plates, rods, and elas
tic bodies have the same structure, and since in the reasoning for the 
membrane we used only the structure of the energy functional, we can 
immediately reformulate unilateral problems for all the objects we just 
mentioned (of course, for a 3-D body we can stipulate the unilateral 
condition only on the boundary). We leave this work to the reader. 
The theory of unilateral problems and variational inequalities contains 
more difficult questions than the existence of energy solutions: it stud
ies the problem of regularity of this solution, which is how the smooth
ness of solutions depends on the smoothness of the load. The inter
ested reader should consult more advanced sources (e.g., [Friedman (1982); 
Kinderlehrer and Stampacchia (1980)]) for this. 

4.15 Exercises 

4.1 For all the bodies discussed in § 4.1 (except a stretched bar), write out 
the functional of total potential energy and the virtual work principle in the case 
when some part of the object (of its boundary for a 3-D body) is supported by 
a foundation of Winkler's type (i.e., when there is a contact force of supports 
whose amplitude is proportional to corresponding displacements). 

4.2 By analogy with the material presented in § 4.3, consider the generalized 
setup for the equilibrium problem for a membrane with mixed boundary con
ditions. Assume that on some part of the boundary u = 0, while on the rest 
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there is a given force g(s). Formulate the corresponding theorem of existence and 
uniqueness of solution in this setup. 

4.3 Consider a beam under bending and stretching. Formulate the generalized 
setup for this problem, combining the setups for a stretched rod and bent beam. 
Formulate the corresponding existence-uniqueness theorem. 

4.4 (a) Which terms are necessary to add to the equilibrium equation (4.1.10) 
to include a finite number external point couples and forces acting on the beam 
into the generalized setup? (b) Is it possible to the consider generalized setup 
when there is a countable set of point couples and forces? 

4.5 For a free plate, consider a case when there are forces given on the edge of 
the plate. Formulate the form of the potential and the conditions for solvability 
of the corresponding problem. 

4.6 Using the material in § 4.7 as an example, reproduce the form of the 
Hamilton-Ostrogradskij principle for each type of object we considered. 

4.7 Derive equations for solving the minimum problem (4.7.17). 

4.8 Show that if £ is not finite dimensional, then the norm ||u||A of § 4.11 
cannot be equivalent to the initial norm of the space £ because A is compact. 

4.9 Demonstrate that the set { ^ s i n f c r l , k = 1,2,..., is an orthonormal 

basis of L2[0, IT], 

4.10 Reformulate the statements of § 4.11 for each of the mechanics problems. 

4.11 Suppose that in conditions of Theorem 4.13.2 the minimum point is 
unique. Prove that any minimizing sequence strongly converges to the minimum 
point. 

4.12 Referring to § 4.14, demonstrate uniqueness of solution of the problem 
under consideration in W1,2(Q,), that w* + g does not depend on the choice of 
geW^iQ). 
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Appendix A 

Hints for Selected Exercises 

C h a p t e r 1 

Exercise 1.1. We first show that the Euler equation for the simplest functional 
can be rewritten in the equivalent form 

l_ 

y' dx ( / - fy'V) ~ fx = 0. 

Observe that if f(x, y, y') does not depend explicitly on x, then one integration 
can be performed to give 

f — fy'V = constant. 

Indeed, multiplying and dividing the left member of the Euler equation by y', 
we have 

1 

V 
fyy-y^fv = 0. 

Adding and subtracting a couple of terms inside the brackets, we obtain 

fx + fvy' + fv>y" - fv'y" - y'fafy' ~ /* = 0. 

But the first three terms inside the brackets add to produce df /dx (total deriva
tive), and the next two terms add to produce —d(fyiy')/dx (product rule). 

For the surface of revolution problem, the area functional is 

/ 2ny,/l + (y')2dx. 
J a 

Note that x does not appear explicitly; using the integrated version of Euler's 
equation, we get 

y' 
2ny\/l + (y')2 — 2iry : y = constant = a. 

Vl + {y'Y 

383 
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Divide through by 2TY, then multiply through by %/l + (y')2 and simplify to get 
y = P\J\ + (y')2 where (3 = a/2-K. Now solve for y to obtain the separable ODE 

y2 

y =\l^-1-P2 

The solution, obtained by direct integration, is 

/Jcosh"1 ( J J =CE + 7, 

hence 
y(x) = /3cosh ' 

P 
is the general form of the curve sought. The constants ,3,7 must be determined 
from the two endpoint conditions. We see that the minimal surface of revolution 
is a catenoid. 

Exerc ise 1.2. We need to find a smooth curve connecting the points (a, j/o) and 
(b,yi), a < b. It is clear that for solvability of the problem it is necessary that 
2/o > j / i . 

First show that if / takes the general form 

f(x,y, y) = p(y) \ / l + (y')2 . 

where p(y) depends explicitly on y only, then 

dy I y/W 
x + /3 

where a and (3 are constants. The functional giving the time taken for the mo
tion along a curve y(x) is obtained by putting p(y) = l/y/2gy where g is the 
acceleration due to gravity. 

Using the specific form of p given and introducing a new constant 7 = l/2a2g, 
we have 

dy I x + p. 

The substitution y = 7 sin2 ( | ) reduces this to 

I j(l-cose)d9 = x + P 

after the use of a couple of trig identities. Hence 

x + P=^{e-smd). 
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The other equation of the cycloid is 

2/ = 7sin2 (-) = | ( l - c o s 6 > ) . 

Of course, the constants (3 and 7 would be determined by given endpoint condi
tions. 

Exercise 1.3. The Euler equation fy — fyix — fyiyy' — fv'y>y" = 0 reduces to 

fy'y'V" = 0. 

This holds if y" = 0 or fyiyi = 0. The equation y" = 0 is satisfied by any line 
of the form y = c\x + a. If the equation fyiyi = 0 has a real root y' = 7, then 
y = 'yx + C3; this, however, merely gives a family of particular straight lines (all 
having the same slope 7). In any case, the extremals are all straight lines. 

Exercise 1.4. The average kinetic energy is given by 

1 rT 1 
f 2mX'2^dt 

Since the integrand depends explicitly on x' only, the extremal is of the general 
form x(t) = c\t-\-C2- Imposing the end conditions to find the constants c\ and C2 
we obtain 

. . X\ — Xo , , 
x(t) = ——— t + x0. 

The solution means the motion should be at constant speed. Any acceleration 
would increase the energy of the motion. 

Exercise 1.6. (a) Vanishing of the first variation requires that equation (1.5.4) 
hold. Let us review for a moment. We know that if we appoint a condition such 
as y(a) = Co then, since we need 4>(a) = 0 to keep our variations y(x) + f{x) 
admissible, we need <p(o) = 0 and equation (1.5.4) yields 

fy'(b,y(b),y'(b))=0. 

This natural condition makes reference purely to b. Now consider the mixed 
condition given in the problem. To keep our variations y(x) + <p(x) admissible we 
need ip(a) + tp(b) = 0 or tp(a) = —f(b). Equation (1.5.4) yields 

fv'(b,y(b),y'(b)) + fy,(a,y(a),y'(a)) =0. 

This is the supplemental "natural" boundary condition, (b) To keep our variation 
admissible this time we need 

1>(v(a) + <p(a),y{b) + <p{P))=0. 

As before, we're looking for a relation between (f>(a) and <t>(b) that we can sub
stitute into (1.5.4). Restricting ourselves to infinitesimal variations (j>{x), we use 
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Taylor's formula in two variables to write, approximately, 

rP(y(a) + tp(a),y(b) + <p(6)) = iP(y(a),y(b)) 

+ ( * a ) | ; + * 6 ) | j ) l K a , / 3 ) a = y ( a ) 
/3=y(fc) 

The first term on the right-hand side is zero by the condition given in the problem. 
Therefore we need 

ip(a) dj>(a,P) 
da a=y(a) 

0=y(b) 

+ V(b) 
dil>(a,0) 

dp a=y(a) 
0=y(b) 

= 0 

ty(a,P) 
dP 

<p{a) = K<p(b), K 0=y{b) 

dip(a,p) 

da =y(a) 

Equation (1.5.4) yields 

fyl(b,y(b),y'(b)) - Kfy,(a,y(a),y'(a)) = 0 

as the corresponding natural condition. In part (a) we had ip(a, P) = a + P — 1, 
which gave us K = — 1. 

Exercise 1.7. This is a mixed problem. However, the general solution of the 
Euler equation is the same as for the brachistochrone problem: 

x + P=j{0- sin(9), y=j(l-coB9). 

The condition at x = a determines /?. The condition at x = b is the free-end 
condition / , v'\x=b = 0. Here 

f(x,y,y') 
1 

nm 
\A + (v')2 

(again, the same as for the brachistochrone problem) so that 

y' 
/«' = 

/2^y/l + (y')2' 

Thus the condition at x = b is y'(b) — 0; i.e., the required curve must "flatten 
out" at this endpoint. 
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Exercise 1.8. Arc length on the cylinder is given by (ds)2 = (ad<j>)2 + (dz)2. 
Parameterizing the desired curve as 4> = 4>(t), z = z(£), we seek to minimize the 
functional 

/ [ a V ) 2 + (*')2]dt 
J a 

Each equation of the system (1.6.4) involves only the derivative of the dependent 
variable; hence the extremals are straight lines: 

4>{t) = C\t + C2, z(t)=C3t + C4-

Eliminating t we find z{4>) = acf> + /3, a family of helices on the cylinder. 

Exercise 1.9. Repetition of the steps leading to (1.4.3) gives the system 

/

b I "- "• <l \ 

fv I x,^2ciipi(x),'^2ci<p'i(x),'^2ci<p"(x) ipk(x)dx 
\ i=0 i=0 i=0 / 

/
;, / n n n \ 

fy' \x,y^cnpi{x),'^ciip'i{x),Ylcnp'i{x)\ <p'k(x)dx 
\ i=0 i=0 t=0 / 

/
(, / n n n \ 

fy'/ \x,Y^citpi{x)^cnp'i{x),'Y^cnp'l{x) j ip'k{x)dx = 0 
\ i=0 t=0 i=0 / 

j-b 

+ 

i-b 

+ 

for k = 1 , . . . ,n . 

Exercise 1.10. Refer to Chapter 4. 

C h a p t e r 2 

Exercise 2.2. The result follows from differentiation of the equality 

* ( i ) - * _ 1 ( t ) = E. 

We have 

(*( t ) • * ~ 1 ( i ) ) ' = *'(*) • * _ 1 ( i ) + *(*) • ( * - 1 (*))' = E ' = 0, 

hence 
* ( t ) • ( * - 1 ( t ) ) ' = - * ' ( t ) • * _ 1 ( i ) 

and can premultiply both sides by * - 1 ( i ) . 

Exercise 2 .3 . Use the linearity of the main part of the increment with respect 
to the increment of the control function. 

Exercise 2.4. Introduce an additional component yn+i of the vector y by the 
equations y'n+i(t) = G(y(t)), yn+i(0) = 0. 
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Exercise 2.5. By Pontryagin's maximum principle we get that F take the values 
+1 or —1 for optimal solution. Solve the problems with this F and collect the 
whole solution using these solutions. 

Chapter 3 

Exercise 3.1. Assume S is closed in X. Let {xn} C 5 be convergent (in X) 
so that xn —> x for some x € X. We want to show that x € S. Let us suppose 
x £ S and seek a contradiction. Given any e > 0 there exists Xk (^ x) such that 
d(xk,x) < e (by the assumed convergence), so x is a limit point of S. Therefore 
S fails to contain all its limit points, and by definition is not closed. 

Conversely, assume S contains the limits of all its convergent sequences. Let 
y be a limit point of S. By virtue of this, construct a convergent sequence yn C S 
as follows: for each n, take a point yn € S such that d(yn,y) < 1/n. Then 
Vn —> y (in X). By hypothesis then, y £ S. This shows that S contains all its 
limit points, hence S is closed by definition. 

Exercise 3.2. (a) Let B(p,r) denote the closed ball centered at point p and 
having radius r, and let q be a limit point of B(p,r). There is a sequence of 
points pk in B(p,r) such that d(pk,q) —• 0 as k —• oo. For each k we have 

d(q,p) < d(q,pk) + d(pklp) < d(q,pk) + r, 

hence as k —> oo we get d(p,q) < r. This proves that q G B(p,r). (b) True 
vacuously, (c) Obvious, (d) Let S = Di^iSi be an intersection of closed sets Si. 
If S = 0 then it is closed by part (b). Otherwise let q be any limit point of S 
and choose a sequence {pk} C S such that pk —> <?• We have {pk} C Si for each 
i, and each Si is closed so that we must have q € Si for each i. This means that 
q € C\i£iSi. (e) We communicate the general idea by outlining the proof for a 
union of two sets. Let S = A U B where A, B are closed. Choose a convergent 
sequence {rtn} C S and call its limit x. There is a subsequence {x„k} that consists 
of points belonging to one of the given sets. Without loss of generality suppose 
{xnk } C A. But Xnk —-> x, hence x £ A since A is closed. Therefore x 6 S. 

Exercise 3.3. It is clear that the sequence of centers {xn} is a Cauchy sequence. 
By completeness, xn —> x for some x € X. For each n, the sequence ^Xn+p/p=i 
lies in B(xn, rn) and converges to x; since the ball is closed we have x G B(xn, rn). 
This proves existence of a point in the intersection of all the balls. If y is any 
other such point, then d(y,x) < d(y,xn) + d(x„,x) < 2en —> 0 as n —» oo. Hence 
y = x and we have proved uniqueness. 

Exercise 3.4. Let us verify the norm properties for ||-||JC/LT- Certainly we have 
\\x + U\\x,u > 0. Recalling that the zero element of X/U is U, we have 

l l0*/^IL/c/ = ll°* + UWx/u = * £ ||0x + u\\x = 0 



Hints for Selected Exercises 389 

since Ox € U. Conversely, if ||a; + U\\x/U = 0 then 

inf llx + wll v = 0, 

hence for every e > 0 there exists u 6 U such that \\x + u\\x < e. Prom this we 
can infer the existence of a sequence {uk} C U such that 

lim ||a; +Wfc||v- = 0. 
k—*oo 

But this implies x + Uk —> 0, or Uk —» —x. Since U is closed we have —x € U, 
hence x + U = U. Next, 

| | a ( i + t / ) | | x / [ / = ||ax + U\\x/U = inf ||aa; + u\\x = \a\ inf 
1 

x H — w 
Q 

M 'nf Ik + « | | x = \a\ \\x + U\\x/u. 

Finally 

( i + U) + (y + U)\\x/U = \\(x + y) + U\\x/U = urf \\(x + y) + u\\x 

= inf ||(x + y) + u + u'\\ v 

so that 

\\(x + U) + (y + U)\\x/U < inf (||(x + u)llx + \\(y + u')\\x) 

= uinfJ|(x + W) | |x + umfJ|(, + n ' ) | | x 

= inf ||(x + « ) | | x + inf; , | | (y + «')IU 

= ||(x + t/) | | + ll(l/ + tf)ll 

and the triangle inequality holds. 

Now suppose X is complete. Choose a Cauchy sequence {yk + U} C X/U. A 
"diagonal sequence" argument may be used to extract a subsequence {xk + U} 
of {yk + U} such that 

\\(x2 + U)-(xi + U)\\x/u<l/2, 

\\(x3 + U)-(x2 + U)\\x/u<l/22, 
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i.e., such that 

||(xfc+1 + U)- (xk + U)\\x/U = \\(xk+i - xk) + U\\x/U < l/2fc 

for each k. Then by definition of IHI^/y we can assert the existence of an element 
Uk € (xk+i — Xk) + U having ||«fc||x < l/2 fc. Choose a sequence {zk} C X such 
that for each k 

Zk € xk + U, zk+i - Zk = uk. 

(We indicate how this is done; see Bachman [Bachman and Narici (1966)] for a 
more formal argument. Choose z\ € x\ + U. We now wish to choose zi so that 
22 € a>2 + U and Z2 — zi = « i . Write 

u\ = X2 — x\ + v for some v € U 

and also 
z\ — x\ + w for some w 6 U. 

Then u% + x\ = X2 + v; add w to both sides and let v + w = w' £ U to get 

Zl + Wl — X2 +W . 

Hence define Z2 = X2 + w'. Repeat this procedure to generate zz, 24,....) Then 

| | 2 f c + 1 - 2 f c | | x < l / 2 f c . 

If m > n then 

| | 2 m - Z„\\x < \\zm ~ 2 m - l | | x H h | |2n+l - Zn\\x 

1 1 1 
< ^r-T + --- + — < 2"i—1 2n 2n—^ 

so {2jt} is Cauchy in X. Since X is complete, zk —> 2 for some z £ X . By the 
way the zk were defined we have xk + U = zk + U. Then 

\\(xk + U)-(z + U)\\x/U = \\(zk + U)-(z + U)\\x/U 

= \\(zk-z) + U\\x/u 

= inf \\(zk-z) + u\\x 

<\\zk-z\\x-*0 

so that Xk + U —• 2 + U. We have therefore shown that some subsequence of the 
Cauchy sequence {yk + U} has a limit. 

Exercise 3.5. Since X is separable it has a countable dense subset A. The set 

S = {[x]: x € A} C X / M 
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is evidently countable; let us show that it is also dense in X/M. Because the 
norm on X/M is given by 

| | [x ] | |= inf Hx + mll, 

the distance between any two of its elements [x] and [y] can be expressed as 

II M - M i l = 11 [ * - » ] « = inf | | ( * - i / ) + m | | . 

So let [z] € X/M and e > 0 be given. We can find w £ A such that \\z — w\\ < e. 
Then the distance between [z] and [w] is given by 

inf ||(* -w)+ m|| < inf (||z - «,|| + ||m||) 
m£M mGM 

= \\z-w\\+ inf ||m|| 

= 11*-HI 

< £. 

The element [w] belongs to 5 and lies within distance e of [z] in the space X/M. 

Exercise 3.6. Let us propose a linear mapping T: to each [x] € X/M there 
corresponds the image element T([x]) = Axo, where xo is that representative of 
[x] which has minimum norm. (The existence of xo is guaranteed because M is 
closed.) We have 

\\xo\\x = II [x] \\X/M , 

so 

| |T([i]) | |y = | |Aro| |y < c \\xo\\x = c || [x] \\X/M . 

Therefore T is bounded. 

Exercise 3.7. Let T be defined by T([x]) = Ax, where x is the minimum-
norm representative of [a;]. Take a bounded sequence { [x]n } from X/M so that 
II [x\n IIX/M < ^ ^or s o m e finite R. For each n, choose from [x]n the minimum-
norm representative xn. We have T([x]n) = Axn for each n, and the sequence 
{xn} is bounded (in X) because Ha^H^ = || [x]n | |X /M . By compactness of A, 
there is a subsequence {x-nk} such that {Axnk} is a Cauchy sequence in X. 
Therefore { [x}n } contains a subsequence { [x]nk } whose image under T is a 
Cauchy sequence in X. 

Exercise 3.8. (a) Let e„ denote the sequence with nth term 1 and remaining 
terms 0. Each en £ £2, and any finite set {ei , . . . ,e jv} is linearly independent, 
(b) For any positive integer n we have 

I/P / n \ 1 / P 

lim \ ^ \xk\v I = max \xk\ < sup \xk\ 
'^°° \ ^ / l<fc<n fc>t 
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so that 

( n \ ! /P / oo \ ! /P 

y^ |xfe | p ) = lim y^|a;fc|p) <sup|a:k|. 
But for each fc > 1 

/ oo \ ! /P 

sup|xfc | < lim I y^ \xk\
p I 

>»(gM') 

so that 
I / P 

Hence 
I / P 

SUp|Xfc|. 
fc>l 

(c) Assume q > p. Note that a < 1 implies aq < a?. If a& < 1 for each k then, 
we have 

f>fcr < x>op. 
Because 

kfc| = ( | ^ | P ) 1 / p < ( E l ^ N =IM|P, (A.0.1) 

we have \xk\/ ||x|| < 1 for each fc, and shall momentarily let \xk\/ ||x|| play the 
role of <2fc above. Now 

"'-" " = Y (\xk\Y < y (M-Y = i. 
Z ^ Hvll - Zs\ Hvll 

Hence (||x|| ) ' < (||x|| )9 , and the desired inequality follows, (d) To see that 

e1 C (?, observe that 

oo / oo \P 

J2MP< E W =(wii)' 

so ||x||p < | | x | | r If x e i1 then Hx^ < oo, hence ||x||p < oo so x € £p. The 
inclusion £p C £q follows from the inequality of part (c). Finally, we may take 
the supremum of (A.0.1) to obtain HxH^ < ||x|| . The inclusion t? C £°° follows, 
(e) Every summable sequence converges to zero, every sequence that converges 
to zero converges, and every convergent sequence is bounded, (f) Let p < oo and 

file:///xk/Y
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let {x n } be a Cauchy sequence in (P. Each x™ = (x", x%,..., x%,...). Let e > 0 
be given and choose iV such that whenever m,n > N, 

oo 

(| |xm - x" | | p ) p = X > ™ " xl\* < ep. (A.0.2) 

Suppose 7n > n and fix n > TV. By (A.0.1) we have for each k 

| z r - z £ l < l | x m - x " | | p < £ ; 

hence, for each k the sequence {x™} is a Cauchy sequence in R. By completeness 
of R we have x™ —> xk, say. Now let x = (xi ,X2, . . . ,Xfc,.. .)• We will show that 
x n —» x. By (A.0.2) for any finite j we have 

j^W-xlfKe*. 

Hence 
i 

lim Y\xT-xZ\p < lim £p 

m—»oo ^ - ^ m—»oo 

which gives us 

^ \xk -xl\v < ep. 
fc=i 

As j —• oo we therefore have 

oo 

5>fe-*£r<£
p. 

In other words ||x — x n | | < e whenever n > N, hence x n —> x. To see that 
x £ £p we write 

| |x | |p < ||X - X N + 1 | | p + | | X N + I | | p < 8 + \\xN+% < CO. 

Now consider the case p = oo. Let {x n} be a Cauchy sequence in £°°. Each x " 
= (x^)k

xL1. Fix e > 0 and choose N such that whenever m,n> N, 

sup la;™ -xl\ < e. 
k 

Suppose m >n and fix n > TV. For each k 

\xT-xn
k\<e, (A.0.3) 

hence for each k the sequence {x™} is a Cauchy sequence of real numbers. By 
completeness of R we have x™ —> Xk, say. Now let x = (xk)^! a n d show that 
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x n —> x. As m —» oo (A.0.3) gives 

\xk - %k\ < e 

for each k. Hence 
SUp \xk — X^\ <£ 

k 

for n > N, proving that x n —• x. Since ||x — x ™ ^ < e for n > N we have 

l |x |L < ||x - x " + 1 Hoc + | | x N + 1 ||oo < e + | | x N + 1 Hoe, 

hence x € £°°. (g) Let x = (£i,£2, • • •) £ £v'• Since Y^T=i l£fc|P converges we can 
choose n large enough to make SfcLn+i | 6 I P as small as desired. Hence we can 
approximate x arbitrarily closely by an element x n having the form 

x„ = (£1, £2 , . . . , £n> 0 ,0 ,0 , . . . ) . 

Furthermore each £i may be approximated by a rational number n. The set 5 
consisting of all elements of the form 

yn = (T-I, 7-2,..., r„ , 0 ,0 ,0 , . . . ) 

is countable and dense in F'. More formally, let e > 0 be given. Choose n so that 
E^=„+i 16lp < eP /2, then choose the n so that |& - n\ < e / (2n) 1 / p for each 
i = 1 , . . . , n. We have 

fc=l fc=n+l 

as desired, (h) Fix any countable subset { x ' " ' } ^ ! of l°°. Denote the components 
of x ( n ) by 

x ( n ) = ( d n ) , ^ 2
n ) , ^ n ) , . . . ) . 

We now construct z e (°° such that ||z — x'n ' | |oo > 1 for all n. Denoting 

z = (Ci.C2,C3,--0 

we let 

0, I ^ ; | > 1 
6 — ^ „ lf(fc) 

for each k = 1, 2, 3 , . ... Then 

||Z - x ( n ) | |oo = SUP |Cm - & > | > ICn - &"> | > 1 
m>l 

as desired, (i) Let S be the set of all vectors whose components form rational 
sequences that converge to 0. This set is evidently countable. We show that it is 
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dense in Co- Given x = (£i,£2,.. .) 6 Co and e > 0, choose y = (7-1,7-2,...) £ 5 
such that \£i — n\ < e for all i = 1,2, — Then ||x — y ^ = supj |& — n\ < e. 

Exercise 3.9. Let {xn} be a Cauchy sequence in (R, rf). We first show that {xn} 
is a Cauchy sequence in (R, | • |). We have 

\Xn Xrn\ = \Xn Xm\ \Xn + XnXm ~r ^ m | * U <*S 771,71 > OO. 

factor 1 factor 2 

This implies that either factor 1 or factor 2 approaches zero, or both. However, 
if factor 2 approaches zero then xn —• 0 as n —• oo, and this in turn implies that 
factor 1 approaches zero. So factor 1 must approach zero in any case. 

Next, by the known completeness of (R, | • |), we can name a limit element 
x e R for {xn}. 

Finally, we show that xn —> x in (R, d). This follows from the equality 

\xn x | = \xn x\ \xn -\- xnx + x [, 

because the first factor on the right approaches zero and the second factor is 
bounded (since {xn} is bounded). 

Note that here we have no inequality |x3 — y3\ < m\x — y\ for all x,y in R, 
but the notions of sequence convergence with both metrics are equivalent. This 
distinguishes the notion of equivalence of metrics from that of equivalence of 
norms. 

Exerc ise 3.10. Call 
\\Ax\\ 

<X= S U P - M - M - -

IMI^o l|z|| 
By linearity of A, a is also equal to the other expression given in the exercise. 
By definition of supremum we have two things: 

(1) For every e > 0 there exists some xo ^ 0 such that 

\\Ax0\\ 
> a 

zo 

Equivalently, ||^4a;o|| > (a — e) ||a;o||. This implies, by the definition of | |J4||, 
that 

a-e<\\A\\. 

So a < \\A\\ + e, and since e > 0 is arbitrary we have a < \\A\\. 

(2) For every i / O w e have 

\\M<a 
\\x\\ -

So ||Ar|| < a ||x|| for x =fi 0; in fact, this obviously holds when x = 0 as well 
so it holds for all x. By definition of ||J4|| we have ||yl|| < a. 
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Combining the inequalities from parts 1 and 2 we obtain ||A|| = a. 

Exercise 3.11. We can show that the /i are linearly dependent if and only 
if the Gram determinant is zero. Our proof can rest on the fact that a linear 
homogeneous system Ax = 0 has a nontrivial solution if and only if det A = 0. 

Assume linear dependence. Then 5^7=1 aiU — 0 for some on not all zero. 
Taking inner products of this equation with the ft in succession, we get 

« l ( / l , / l ) + • • •+£*„( / ! , /„ ) = 0 , 

ai(fn,fi) H h a n ( / „ , / „ ) = 0, 

(A.0.4) 

(h,fn)\ (on ' ( / i , / i ) 

\(U,fl) ••• (fn,fn)J \Otn 

A nontrivial solution for the vector (a) implies that the Gram determinant van
ishes. Conversely, assume the determinant vanishes so that (A.0.4) holds for some 
nontrivial (a) . Rewrite (A.0.4) as 

fi> 5 Z « i / j } = °> i = l,...,n, 

multiply by cti to get 

" i / i i 5 3 " j / j ) = 0 . i = l , . . . , n , 

and then sum over i to obtain 

i=l j=\ 
Ylaifi = 0. 

Hence ^™=1 aifi = 0 for some scalars on that are not all zero. 

Exercise 3.12. The statement \\An — A\\ —• 0 means that 

\\(An - A)x\\ < c„ ||x|| where c„ —• 0 

and each c„ is independent of x. Since ||x|| < M for all x G S, we have 

Ax11 < cnM. 

But cnM —» 0 together with c„ —» 0 when n —* oo, thus A„x —> A T . 
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Exerc ise 3.13. We have 

2 

} J C-n.gr, 

n=0 
= 15ZCngn> SC k g k 1= m ic™i2 < °°-

n = 0 

Exerc ise 3.14. Assume u(t) and v(t) are each differentiable at t. Form the 
difference quotient 

(u(t + h),v(t + h))-(u(t),v(t)) * ,,l(t , hs „u . hn
 l , m m i 

and on the right-hand side subtract and add the term 

1 
-(u(t),v(t + h)) 

to write the difference quotient as 

'u(t + h) -u(t) 
h 

,v(t + h)\ + [ u{t) 
v{t + h) -v(i) 

Then let h - » 0 . 

Exerc ise 3.15. We can use the Cauchy-Schwarz inequality to write 

\\Xn\\\\x\\>\(xn,x)\ 

for each n, hence 

So 

liminf ||o;n|| ||x|| > liminf | ( i „ , x ) | = lim |(a;n,x)| = | (x,x) | = ||x|| . 

| | x | | l iminf | | x n | | > | | x | | 2 . 

For i / O w e can divide through by ||a;|| to get the desired inequality. It holds 
trivially when x = 0. 

Exercise 3.16. Because A is densely defined, for each i 6 F there is a sequence 
{ i „} C D(A) such that x„ —» x. Since this sequence converges it is a Cauchy 
sequence. Because A is bounded, {Ai n } is a Cauchy sequence in W, hence 
converges to some w € W. Furthermore, w does not depend on the Cauchy 
sequence used. (That is, if xn —• x and x'n —• x, and Axn —+ w, then Ax'n —» w. 
Indeed for each n we have, 

0 < \\Ax„ - Ax'n\\ = \\Axn -Ax + Ax- Ax'n\\ < \\A\\ (||x„ - x|| + \\x - x'n\\); 

http://C-n.gr
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as n —> oo we have limn_oo \\Axn — Ax'n^ = 0 and by continuity of the norm we 
have the conclusion.) Thus we can define an extension Ae by 

Aex = lim Axn = w for any x €V. 
n—»oo 

Linearity is evident. Since 

||Aea:|| = II lim Axn\\ = lim ||Ax„|| < lim ||A|| ||x„|| = ||A|| ||z|| , 

Ae is bounded with \\Ae\\ < \\A\\. The reverse inequality follows by noting that 
Ax = Aex whenever x e D(A). Finally, we prove uniqueness: if A'e is another 
bounded (hence continuous) linear extension of A, then for any sequence {x„} C 
D(A) with xn —> x we have 

Aex = lim Aexn = lim Axn = Aex, 
n—*oo n—+00 

which gives A'e — Ae. 

Exercise 3.17. Suppose Vk —*• v in V where the dimension of V is n. Choose a 
basis {e.k) of V and write 

3=1 3=1 

For an arbitrary bounded linear functional / on V we have f(vk) —• / ( f ) as 
fc —> 00. For i = 1 , . . . ,n, put / equal to ft defined for any x = ]Cfc=i £feefc by 
/ i ( x ) = &• Then fi(vk) = a\ ' —» /i(u) = a; as fc —> 00, and we have 

lim ||v — Vk\\ = lim 
fc—*oo fc—*oo 

< lim £|a<fc)-^11^11=0. 
J = l 

Exercise 3.18. (a) From x = M _ 1 i we obtain ||x|| < \\A\\ WA"1]] \\x\\ and the 
result follows, (b) Using x = A~ly we have Ae = r, hence s = A~lr. The four 
inequalities 

IMI<IMmiMI, 
l|r||<p||||£||, 
Nl < Pll INI, 
IkHII^IMHi, 

follow immediately and yield the desired result. 

Exercise 3.19. Let B be the unit ball in X. The image of the bounded set B 
under T is precompact; T _ 1 returns this image into B. But a continuous operator 
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maps precompact sets into precompact sets, hence if T 1 were bounded then B 
would be precompact. Since X is infinite dimensional, this is impossible. 

Exercise 3.20. (a) Let F: X —> Y be an isometry between metric spaces (X, dx) 
and (y, dy). Then, by the definition, 

dY(F(x2),F(xi)) = dx{x2,xi) for all a;i,X2 e X. 

Continuity is evident. To see that F is one-to-one, suppose F(x2) = F{x\). 
Then dy(F(x2), F(xi)) = 0 = dx(x2,xi), so X2 = x\ by the metric axioms, 
(b) First suppose \\Ax\\ = \\x\\ for all x £ X. Replacing x by X2 — x\ we have 
\\Ax2 — Axi\\ = \\x2 — x\\\ as required. Conversely suppose that \\Ax2 — Ax\\\ = 
\\x2 — xi\\ for any pair xi,a;2 G X. Putting x\ = 0 and X2 = a; we have the 
desired conclusion. 

Exercise 3.21. Suppose Parseval's equality holds for all / in H. We fix / and 
use the equality, equation (3.14.4), and continuity to write 

lim 
n—*oo 

= lim 
n—*oo 

This shows that 

ll2-£K/'9*)l 
fc-1 

n 

f -£(/.Sfc)fffc 
fc=i 

f-^2(f,9k)gk 
fc=i 

f = Y1 akgk where Qfc = (/' 9k)-

Exercise 3.22. The inequality 

dx 

df(x 
dx 

< a||/llc(i)(-<x 
C(-oo,oo) 

) < a 1 sup | / ( i ) | + sup 

, 0 0 ) 1 

df(x) 
dx sup 

obviously holds with a = 1. 

Exercise 3.23. We construct a subset M of the space whose elements cannot be 
approximated by functions from a countable set. Let a be an arbitrary point of 
[0,1]. Form M from functions defined as follows: 

fa{x) = 
1, x > a, 

0, x < a. 

file:////Ax2
file:////Ax2
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The distance from fa(x) to fp(x) is 

\\fa(x) - f0{x)\\ = ^ p \fa(x)-f0(x)\ = liia?l3. 
xS[0,l) 

Take a ball Ba of radius 1/3 about fa(x). If a ^ /3 then Ba n B/3 is empty. 
If a countable subset is dense in the space then each of the Ba must contain 

at least one element of this subset, but this contradicts Theorem 3.2.2 since the 
set of balls Ba is of equal power with the continuum. 

Exercise 3.24. Let {An} be a Cauchy sequence in L(X,Y), i.e., 

||j4n+m - A„\\ —* 0 as n —• oo, m > 0. 

We must show that there is a continuous linear operator A such that An —+ A. 
For any x € X, {Anx} is also a Cauchy sequence because 

||^4n+ma; - A„x\\ < \\An+m - An\\ \\x\\; 

hence there is a y G Y such that Anx —* y since Y is a Banach space. For every 
x £ X this defines a unique 3/ £ F , i.e., defines an operator A such that y = ylx. 
This operator is clearly linear. Since {An} is a Cauchy sequence, the sequence of 
norms {||An||} is bounded: 

\\Ax\\ = lim p„a : | | < limsup \\A„\\ \\x\\. 

That is, A is continuous. 

Exercise 3.25. We can see that the equation (A + B)x = y has a solution for any 
y € Y by applying the contraction mapping theorem. Indeed, pre-multiplication 
by A-1 allows us to rewrite this equation as x = Cx + xo where C = —A~lB and 
xo = A~xy. Defining F(x) = Cx + xo, we see that F(x) is a contraction mapping: 

\\F(x) - F(y)\\ = \\Cx - Cy\\ < \\C\\ \\x - y\\, \\C\\ < WA^W \\B\\ < 1. 

Since the equation x = F(x) has a unique solution x* £ X, so does the original 
equation. 

From x = A"1 Ax it follows that ||x|| < | | J 4 _ 1 | | | |AE| | , hence 

\\Ax\\>\\A-l\\-l\\x\\. 

So for any y G Y we can write 

Hvll = \\(A + B)x\\ > \\Ax\\ - \\Bx\\ > WA-'r1 \\x\\ - \\B\\ \\x\\ 

and therefore 

l|a:|| < (HA"1!!"1 - HSU)-1 ||y|f. 

The desired inequality follows. 
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Exercise 3.26. First assume that y = Xx for some scalar A. Then 

\{x,y)\ = \(x, Xx)\ = |A||(x,*)| = |A| ||x||2 = ||*|| ||Ax|| = | |z | | | |v | | , 

hence equality holds. Conversely, assume equality holds in (3.9.1). Squaring both 
sides, we obtain the relation 

(x,V)J^y) = \\x\\2\\y\\2. 

Using this it is easily verified that 

\(y,y)x-(x,y)y\2 = {(y,y)x - {x,y)y, (y,y)x - {x,y)y) = 0, 

hence (y,y)x - (x,y)y = 0. 

Exercise 3.27. (a) Let us denote X\S by S c . First suppose that 5 is open. Let y 
be an arbitrary point of S. Assume to the contrary that every open ball centered 
at y contains a point of Sc. In particular, each such ball having radius 1/n, 
n = 1,2, 3 , . . . , contains some point xn £ Sc. So there is a sequence {xn} C Sc 

such that xn —> y. But Sc is closed so we must have y £ Sc, a contradiction. 
Conversely, suppose that every point of S is the center of some open ball contained 
entirely within S. Suppose to the contrary that S is not open. Then Sc is not 
closed, and there is a convergent sequence {zn} C Sc having a limit y £ S. This 
means there are points of {z„} that are arbitrarily close to y, so it is impossible 
to find a ball centered at y that is contained entirely within S. This contradiction 
completes the proof, (b) Take an open ball of radius r centered at x, and denote 
by U the complement of this ball. Now take any sequence {xn} C U such that 
xn —> x. Since ||a;n — x|| > r for each n, we have ||xo — x\\ > r by continuity of 
the norm. This shows that xo £ U, hence U is closed. So the original ball is open 
by definition, (c) Let / be continuous and let S be open in Y. The set f~1(S) 
is open if it is empty, so we suppose it to be nonempty. Choose any x £ f~1(S). 
Then f(x) e 5 , and since S is open there is an open ball B(f(x),e) contained 
entirely in S. By continuity there exists a ball B(x,5) whose image f(B(x,5)) 
is contained in B(f(x),e) and therefore in S. So B(x,S) is contained in f~1(S). 
This shows that f~1(S) is open. Next let / _ 1 ( 5 ) be open whenever 5 is open, 
and pick an arbitrary x £ X. The ball B(f(x),e) is open so its inverse image 
is open and contains x. Hence there is a ball B(x,S) contained in this inverse 
image. We have f(B(x,5)) contained in B(f(x),e), so / is continuous at x. 

Exercise 3.28. The function 

, , . I 1, x rational, 
f(x) = < 

10, x irrational, 

can be defined on R. Now for any real number xo, whether rational or irrational, 
there are sequences tending to xo that consist of purely rational or purely irra
tional elements (i.e., both the rationals and the irrationals are dense in the reals). 
For one type of sequence the limit is 1 and for the other type the limit is zero. 
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Thus at point xo there is no limit value and the function is not continuous by 
definition. 

Exercise 3.29. (a) We can write 

P"ll^(o,i) = J (J k(s,t)u(t)dt\ ds 

< f (J \k{s,t)\2dt\ f J u2(t)dtj ds 

= ( / / \k(s,t)\2 dtds\ f u2(t)dt 

where 

Therefore 

M=( f f \k{s,t)\2dsdt 
1/2 

P U I I L 2 ( 0 , 1 ) < M I I « I I L 2 ( O , 1 ) 

and we have \\A\\ < M. (b) Since ||5x|| = ||x||, we have | |5 | | = 1. 

Exercise 3.30. We have 

||Ax — Ai/|| = max / x2(s)ds— / y2(s)ds 
" '€[0,1] J0

 W Jo 

< max / \x(s) + y(s)\ • \x(s) — y(s)\ds 
'S[°.l] Jo 

< ( max !*(*)! + maX] |y(t) |) • max] \x(t) - y(t)\ • m « ^ ds 

= (NI + lli/ll)-ll«-»l|. 

On any ball of the form ||x|| < \ — e where e > 0, we have ||j4a; — Ay\\ < q \\x — y\\ 
where q < 1. 

Exercise 3.31. All elements of the form 

1 , 5 , 5 , . . . , - , 0 , 0 , 0 , . . . 
2 3 n 

belong to S. The sequence {x n} is a Cauchy sequence because for m > 1 we have 

| | x n + m - x „ | | = sup - = — — —• 0 a s n - » o o . 
n+l<k<n+m K V, + I 

However, the element lim„-^oo x n does not belong to S. 
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Exerc ise 3.32. The Neumann series for (A — I) 1 is 

oo 

(A-iy1 = --£*". 
fc=0 

So 

| | ( A - / ) - 1 | | < ^ ; | | A * | | < ^ | | > l | | f c = I - i j 
All 

Exercise 3.33. The reader should verify that the norm axioms are satisfied for 
the norm in question. Then take a Cauchy sequence {(xk,yk)} C X x Y so that 

IKs-miy-m) — (in,2ta)llxxy = IK3""1 — Xni Vm ~ 2/™)llxxy 

= max{||a:m - xn\\x , \\ym - yn | | y } 

- • 0 as m,n —•> oo. 

This implies that 

^m ^ n 0 and ||j/m — 2/n||y —* 0 a s m , n - » o o . 

So {x*;} and {j/^} are each Cauchy sequences in their respective spaces X,Y; by 
completeness of these spaces we have Xk —• x and yk —> y for some x £ X and 
y € V. Finally, we have (xk, yk) —> (x,y) in the norm of X x Y: 

\\{xk,Vk) - (a;,y)|| = \\{xk - x,yk-y)\\ 

= max{||a;fc - x\\x , \\yk - y\\Y} 

->0 as k —> oo. 

Exercise 3.34. We have 

\\Vn-X\\ 
1 " 

< — > Ki where Ki = 

Then for any m between 1 and n we can write 

1 m 1 ™ 

\\Vn - x\\ < -"S^Ki + - y~] Ki 
i=l i=m+\ 

^ 1 / \ (n-m\ 
< — [ m • max m + I • max «i 

Tl V l < i < m / \ n / m + l < i < n 

< — m • max «;, + max m. 
fl \ l<i<m I t > m + l 
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Let e > 0 be given. Choose and fix m sufficiently large that the second term 
is less than e/2. In the first term the quantity in parentheses is then fixed, and 
we can therefore choose N > m so that the first term is less than e/2 whenever 
n > N. 

Exerc ise 3.35. Assume | | - j | x and ||-||2 have the property that || Hi -> 0 if 
and only if ||a;n — x\\2 —» 0. Now suppose to the contrary that there is no positive 
constant C such that ||x||2 < C \\x\\t for all x e X. Then for each positive integer 
n there exists Xn G X such that 

> n \\x„ 

Define 

Then 

while 

Vn = 
V^l 

lll/nlli = - 7 = - * ° as n - > oo 

II n 1 \\Xn 2 ^ 1 r-
?/« a = -7=71—ii > "7= ' n = V n _ > 0 ° a s n - > o o . 

This contradiction shows that the required constant C does exist. Interchange 
the norms to get the reverse inequality. 

Exerc ise 3.36. We have | | |xm | | — ||2:n|| | < ||a;m — s„ | | —» 0 as m,n —» oo, hence 
the sequence of norms is a Cauchy sequence in K. 

Exercise 3.37. Let U be a separable, dense subspace of X. We take a countable 
dense subset A of U and show that A is also dense in X. Let x 6 X and e > 0 be 
given. Since U is dense in X there exists x' £ U such that d(x, x') < e/2. Since 
/I is dense in U there exists a;" £ J4 such that rf(x', x") < e/2. So d(s, x") < e as 
required. 

Exercise 3.38. Let X be a Banach space so that any Cauchy sequence in it has 
a limit. Now let JZfcLi xk be an absolutely convergent series of elements Xh € X. 
Denote by Si the ith partial sum of this series. Now {si} is a Cauchy sequence 
in X because for m > n we have 

0 as m,n —> oo. 

Therefore Si ^> s for some s £ l b y completeness. 
Conversely suppose every absolutely convergent series of elements taken from 

X is convergent. Let {xk} be any Cauchy sequence in X. For every positive 
integer k we can find JV = JV(fc) such that \\xm — x„\\ < l/2fc whenever m,n > N; 
furthermore, we can choose each such N so that N(k) is a strictly increasing 

m 

Y, Xk 
k=n+l 

oo 

< E II** 
k=n+l 
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function of k. The series SfcU^A^fc+i) — %N(k)] converges absolutely: 

OO ° ° 1 

E \\XN(k+l) ~ XNW\\ < E f̂c = L 

fc=l fc=l 

Hence it converges and by definition its sequence of partial sums 

3 

S3 ~ 2_^[xN(k+l) — XN(k)] = xN(j+l) — %N(l) 
k=\ 

converges. Let s be its limit. Prom the last equality we see that {xN^)} also 
converges and its limit is x = s + XN(I)- But if a subsequence of a Cauchy 
sequence has a limit the entire sequence converges to it. 

Exerc ise 3.39. It suffices to show that the image of the unit ball, i.e., the set of 
all vectors x £ < 2 having 

OO 

||x||a = 5> f c |2<l, 

is precompact. We call this image S and show that it is totally bounded (cf., 
Definition 3.8.2). Let s > 0 be given. Note that if z = Ax is any element of 5, 
we have 

OO OO OO 

£ \zn\
2= Y, | 2 - zn | 2 < 2 - W 5 > „ | 2 < 2-2<N + 1\ 

n=JV+l n=JV+l n=l 

hence it is possible to choose N = N(e) such that 

OO 

E w3<*2/2 
n=JV+l 

for all z € S. Now consider the set M of all "reduced" elements of the form 
( z i , . . . , ZN, 0, 0, 0, . . . ) derivable from the elements of 5. It is clear that M C 5, 
which is bounded. Besides, the JV-tuples of z belong to a bounded set in the finite 
dimensional space RN in which any bounded set is precompact. Hence there is 
a finite e2/2-net of AT-tuples from which for an arbitrary z we select ( £ i , . . . , (N) 
so that 

f>n-C«|2<£2/2. 
7 1 = 1 

Thus an element z£ = ( £ i , . . . , <jv, 0 ,0 , . . . ) £ £2 is an element of a finite e-net of 
S, since 

N oo 

| | z - z l 2
2 = J > " - ^ | 2 + E kn | 2 <£ 2 / 2 + £2/2 = £

2. 
n=l n=N+l 
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Exerc ise 3.40. For A = 0 the operator A — \I is the same as A, hence the 
corresponding resolvent operator is simply A - 1 . This operator exists; it is the 
backward-shift operator and its domain is R(A). But R(A) is not dense in £2 so 
the conclusion follows. 

Exerc ise 3 .41 . The ^2-norms of the sequence elements are given by 

llXfc||£2 - E'! 
1/2 

_ 1.1/2 

We see that ||xfc||£2 —» oo as fc —» oo. But I2 is a Hilbert space, and in a Hilbert 
space every weakly convergent sequence is bounded. 

Exercise 3.42. It is clear that the sequence {sin foe} converges weakly if and only 

if the normalized sequence {w ^ sin foe} converges weakly. The latter sequence 

is orthonormal in L2(0,n), and any orthonormal sequence converges weakly to 
zero. Indeed Bessel's inequality shows that for any orthonormal sequence {eit} 
and any element i g i f w e have 

Y~* |(a:,efc)|2 < oo, hence lim (a;,efc) = 0. 
*—J k—»oo fc=l 

In the Sobolev space, on the other hand, we have 

l a in** 
TV 

W L ^ O . T T ) -a 2 . 2 , , 2fc2
 2 ' 

— sin kx -\ cos kx 
7T 7T 

V 1 + k2 —> oo as k —» oo. 

dx 
1/2 

For any subsequence the norms tend to infinity as well. Since any weakly con
vergent sequence in a Hilbert space is bounded, no subsequence can be weakly 
convergent. 

Exerc ise 3.43. In the process of introducing Lebesgue integration we obtained 
the inequality 

| |F(x) | | < ( m e s n ) i - p | | F ( x ) 1 < q < P-

So a bound on the norm is (mes 0)« *. Taking F = 1 we see that it is not a 
simple bound but the norm of the operator. 

Exerc ise 3.44. Since {xn} is an orthonormal sequence, it converges weakly to 
zero. The image sequence {ylxn} converges strongly to zero by compactness of 
A. 
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Exercise 3.45. The subset inclusion C^"'(Q) C C(Q) certainly holds, so the 
imbedding operator / exists. It is continuous because 

ll/llc(fi) ^ H/llcW(n) > 

as is seen from the form of the norms on these spaces. We must still show that I 
is compact. 

Take a bounded set S C C{n)(Q), n > 1. The image 7(5) is uniformly 
bounded (since it is bounded in the max norm of C(fi)). Furthermore, S is a 
bounded subset of C^'ffi). This latter fact, along with the mean value theorem 

/ ( y ) - / ( x ) = V / ( z ) - ( y - x ) 

implies equicontinuity of I{S). (Here z is an intermediate point on a segment from 
x to y.) So I(S) is compact by Arzela's theorem. Therefore I maps bounded sets 
into precompact sets as required. 

Exercise 3.46. The space Pn with the max norm is complete (since it is a closed 
subspace of C(a, b)) and finite dimensional. Its completion is therefore isomorphic 
to Pn, and in this sense can be regarded as Pn itself. 

Exercise 3.47. We already know that strong convergence implies weak con
vergence, and this does not depend on the dimension of the space. Let H be 
an n-dimensional Hilbert space having an orthonormal basis { e i , . . . , e „ } , and 
suppose {xk} is a sequence of elements in H such that Xk —*• x. Then 

n n 

i = l t= l 

and we have Xk —* x according to Theorem 3.15.2. 

Exercise 3.48. Let M be a closed subspace of a Hilbert space H 
{xn} C M converges weakly to x € H. This means that (xn,f) —• 
every f £ H. Decompose H as M © M±. For every g G M± we have 

(x,g) = lim (xn,g) = 0, 
n—»oo 

s o i l M±. This means that x 6 M. 

Exercise 3.49. (a) Assume S is closed and T is open. Take a sequence {xn} C 
S\T such that xn —• x. Since {rrn} C 5, we have x e S. We claim that x £ T. 
For if not, then x belongs to the open set T and is therefore the center of some 
small open ball that lies entirely in T — a contradiction, (b) Assume S is open 
and T is closed. Let x € S \T. Since i f S w e know that x is the center of 
an open ball that lies entirely in S; we claim that the radius of this ball can be 
chosen so small that no points of T can belong to it. For if not, then for each 
n the ball B(x,l/n) contains a point xn £ T, and the sequence {xn} C T is 
convergent to x. Since T is closed we must have i £ T . However, this contradicts 
the assumption that x 6 S\T. 

Suppose 
(x,f) for 
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Exercise 3.50. For any element / and any e > 0 we can find an element /* € S 
such that [|/ — /*| | < e/2. Next, we can approximate /* with a finite linear sum 
of system elements up to accuracy e/2: | |/* — ^2k cjtefc|| < e/2. So the same sum 
approximates / to within accuracy e. 

Exercise 3.51. We can take 5 = s/L in the definition of equicontinuity. Since 
uniform boundedness is given in the problem statement, S satisfies the conditions 
of Arzela's theorem. 

Exercise 3.52. Suppose S be a compact subset of X. Let {yn} be a convergent 
sequence in A(S), with j/„ —• y. We need to show that y 6 A(S). The inverse 
image of {yn} under A is a sequence in S, and contains a convergent subsequence 
whose limit belongs to S: xu —» x € S, say. Noting that {^4(a;fc)} is a subsequence 
of {j/n}, we have A(xk) —* y. By definition of closed operator it follows that 
x e D(A) and y = Ax. Since i g S w e have y € ^4(5), as desired. 

Exercise 3.53. We begin with 

\\u{x)\ < f u(t)dt +1 f \u'{y)\dy, 
Jo Jo 

square both sides and use the elementary inequality 2\ab\ < a2 + b2 to get 

l2\u(x)\2 <2 

then integrate this over x: 

f. 
Jo 

{t)dt + 2r /V(»)i dy 

Jo 
{x)\'dx<2l 

Jo 
dt + 1 (_/V(»W 

I I \u(x)\2dx<2\ j u(t)dt +l2(f\u'(y)\dy\ 1 

Finally, because of 

we get 

(j[V(l/)l<*v) =(|o'l>'(2/W 

< / l2dy [ \u'\y)\dy 
Jo Jo 

= 1 f\u'2(y)\dy 
Jo 

f \u(x)\2dx<2l j u(t)dt +l3 f \u'2(y)\dy\. 
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Chapter 4 

In the following hints, k (with subscripts) denotes Winkler's coefficient, fli, Vi are 
subdomains, and 7 is a sufficiently smooth curve (may be a part of the boundary). 

Exercise 4.1. 

(1) Membrane. Total potential energy: 

+ 2 fci (u(x>2/))2 ds~ / f(x,y)u(x,V)dxdy. 

Virtual work principle: 

/„ {Tx% + Ty%) dxdV + / n i ^(x,yMx,y)dxdy 

+ / k1u(x,y)ip(x,y)ds = / f(x,y)ip(x,y)dxdy+ / ff(s)<p(s)ds. 
J7 ./« Jan 

(2) Stretched rod. Here the notion of Winkler foundation makes no sense, because 
only longitudinal displacements are taken into account. However, we can 
suppose that at a point xo there is attached a linear spring with coefficient 
k, acting along the rod (which is analogous to Winkler's foundation). In that 
case we have the following. Total potential energy: 

i f ES{x)u'2(x)dx+\{ku{x0)f - [ f(x)u(x)dx-Fu{l). 
^ Jo ^ Jo 

Virtual work principle: 

/ ES(x)u'(x)v'(x)dx + ku(xo)v(xo) = / f(x)v(x) dx + Fv(l). 
Jo Jo 

(Consider the case of several springs along the rod as well.) 

(3) Bent beam. Total potential energy: 

1 P ~\ f 1 
- / EI(x)w" (x)dx+- / k-w (x)dx+~kiw (xo) dx 
2 Jo 2 Ja 2 

- / f{x)w(x)dx- Fw(l). 
Jo 
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Virtual work principle: 

/ EI(x)w"(x)v"(x)dx + / kw(x)v(x) dx + kiw(xo)v(xo) 
JO Ja 

= / f{x)v(x)dx + Fv(l). 
Jo 

Here the region of the foundation is [a, b], 0 < a < b < I. We added a spring 
with coefficient k\ at point xo-

(4) Plate. Total potential energy: 

— / (wxx + w\y + 2vwxxwyy + 2(1 - v)w2
Xy) dfi 

1 Jn 

+ \ I kw2dil+- fkiw2ds- I Fwdtl. 
2 Jnx 2 J-, Jo. 

Virtual work principle: 

D I (WxxVxX + WyyVyy + V {WXXVyy + WyyVXX) + 2 ( 1 — V)WXyVXy) dQ. 
Jn 

+ / kwvdQ.+ j k\wvds= \ FvdCl. 
JO] J-i Jn 

(5) 3D linearly elastic body. Total potential energy: 

1 [ cijkleki(u)ei3{u)dV+l [ k{u-n)2dS- f F-udV- [ fudS, 
2 Jv 2 J9y2 Jy JQVI 

where n is the unit outward normal to the boundary. Virtual work principle: 

[ cijkieki{u)eij{v)dV+ [ fc(u • n)(v • n) dS = [ F • vdV + f f-vdS. 

Jv JdV2 Jv JdVi 

Exercise 4.2. For this case the equation of the virtual work principle takes the 
form 

S n { ^ + %%) dXdV = lKx'yMx,y)dxdy + Jg^g(sMs)ds. 

It is valid for all functions <p(x,y) e C1(f2) such that <p{x,y)\dnr = 0, when 
u = uo(x,y) is a sufficiently smooth solution of the problem under consideration 
so it satisfies u(x,y) |sn! = 0. If dfli U 8Q.2 does not cover dQ, this means that 
o n f i \ (dili U dil,2) there is given zero load and so here du/dn = 0. 

Now the energy inner product takes the same form as for the above considered 
problems for a membrane (u, V)M, but the energy space Sum is the completion 
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of the set of functions u G C x (n) satisfying u(x, y)\dax = 0. On EMTU the norm 
induced by the inner product is equivalent to the norm of W l l 2(f l) . 

The generalized setup of the problem under consideration is defined by the 
above equation of the VWP, so u 6 EM™, is a generalized solution if this equation 
is valid for all ip{x,y) € EM™.. 

The minimum problem now takes on the form 

EMm{u) = - ||w||M - $(u) 

where 

$(u) = / f(x,y)u(x,y)dxdy + 
lan2 

$(u) = / f(x,y)u(x,y)dxdy+ / g(s)u(s)ds. 
i n Jan2 

If 

f(x,y)eL^(Q), 9 ( s ) e L M ( S n 2 ) , (A.0.5) 

then $(u) is a linear continuous functional in EM™- The existence/uniqueness 
theorem is as follows: 

Let (A.0.5) be valid. In the energy space EM™ the functional EMm(u) 
attains its minimum at u = wo and the minimizer satisfying the equation 
of the VWP is unique. 

Exerc ise 4 .3 . The total potential energy is now 

EBR(U) = i / ES(x)u'2(x)dx + l [ EI{x)w"2(x)dx 
1 Jo * Jo 

- / f(x)u(x) dx - Fu(l) - J q{x)w{x) dx - Qw(l), (A.0.6) 
Jo Jo 

where <j(a;) is the distributed normal load and Q is the transverse force on the 
end. 

The equation of the VWP is 

/ ES(x)u'(x)v'(x) dx + / EI(x)w"(x)(p"(x)dx 
Jo Jo 

= / f(x)v{x)dx + Fv(l)+ / q(x)<p(x)dx + Q<p(l). (A.0.7) 
Jo Jo 

Now the energy inner product for pairs u , = (ui,u>i) takes the form 

(UI,U2)BR = / ES(x)u'i(x)u2(x) dx + / EI(x)w'i(x)w2 (x) dx. 
Jo Jo 

With the boundary conditions u(0) = 0 and w(0) = 0, w'(0) = 0, introduce 
the energy space EBR- On EBR its induced norm is equivalent to the norm of 
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Wl'2(0,1) x W2'2(0,l). The total energy functional now takes the form 

EBR(U) = -\\U\\2
BR-^BR(U) 

with 

* B f l ( t l ) 
JO L {x) dx + Fu(l) + / q(x)w(x)dx + Qw{l). 

If f(x) € L(0, /) and q(x) € L(0,1) the functional $ B H ( U ) is linear and continuous 
in SBR and this is enough to state that the total energy functional EBR{U) attains 
its minimum uo in SBR that is unique. This minimum is a generalized solution 
to the combined problem under consideration. 

Exerc ise 4.4. 

(a) The VWP takes the form 

/ EI(x)w"(x)v"(x)dx = / f(x)v(x)dx + > J Fkv(xk) 
Jo Jo k 

+ Y,Mjv'(xj)+Fv(l), 

where point force Fk acts at point Xk and point couple Mj acts at point Xj. 
Remark: This is meaningful because the energy space imbeds continuously 
to the space C ^ ( 0 , /). For membranes and 3-D elastic bodies in the energy 
setup, point forces are impossible. For a plate we can consider a generalized 
setup with external point forces acting on the plate. 

(b) The generalized setup for countable sets of external point forces and couples 
is possible when the series ^2kFk and ^3 Mj are absolutely convergent and 
the the beam ends are clamped, since the corresponding part of the work of 
external forces ^2k Fkv(xk) + J2j MJV'(XJ) is a linear continuous functional 
in the energy space: 

J2 Fkv{xk) + J2 Mjv'{xj < max \v(x)\ V \Fk\ + max \v'(x)\ V \Fj 
~ [0,1] t-*' [0,1] l—1 

k j 

< m||M||n . 

Exerc ise 4.5. The functional $(w) (the potential) takes the form 

$(w) = / F(x,y)w(x,y)dQ + / f(s)w(x, y) ds + ^ Fkw(xk,yk)-
Jn Jon !._, 
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The (self-balance) condition for solvability of the problem is 

$(aa; + by + c) = / F(x,y)(ax + by + c) dQ, + / f(s)(ax + by + c) ds 
Jn Jan 

N 

+ \_, Fk(axk + byk + c) = 0 for all constants o, b, c. 
fe=i 

Exercise 4.6. Use the following forms of the kinetic energy functionals. Rod: 

dx. 
Jo' \<=>t ) 

Beam: 

K=l p{%Ydx. 

Plate: 

dt J 
K = jp{^S'dx. 

Exercise 4.7. It is necessary to solve the following simultaneous algebraic equa
tions with respect t o o i , . . . , o n : 

n 

2jafc(¥'fc,¥'i)M = (MOIVI)M, 

n 

^a f c (vJfe ,v? 2 )M = (UO,<P2)M, 

fc=i 

n 

Exercise 4.8. In case of infinite dimensional space £ the inequality ||u||A > 
m \\u\\£ with constant m > 0 independent of u is impossible. Indeed, take an 
orthonormal sequence {en} in £, so | |e n | | £ = 1. This sequence converges to zero 
weakly and thus, because A is compact, we get | |i4en | |e —» 0. Then ||e„||^ = 
(Ae„,en)s —> 0 as well. 

Exercise 4 .9. Use the fact that this set is the set of eigenfunctions of the 
eigenvalue problem 

u" + X2u = 0, u(0) = 0 = U(TT). 

What is the energy space for this problem where the set is an orthogonal basis? 
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Exercise 4.10. We recall only that for each of our problems the operator A 
is introduced by the following equalities (and the Riesz representation theorem). 
Beam: 

(AW,V)B = / pw(x)v(x) dx. 
Jo 

Plate: 

(AW,V)P = / pw(x,y)v(x,y)dQ. 
Jn 

3-D elastic body: 

(AU,V)E = I pu-vdV. 
Jv 

These operators have all the properties needed in Theorem 4.11.1, and so the 
theorem can be formulated for each of the problems without change. 

Exercise 4.11. Suppose there is a minimizing sequence {x„} that does not 
strongly converge to xo- This means that there is e > 0 and a subsequence {xnk } 
such that ||io — xUk \\H > e. But {xnk } is a minimizing sequence as well, and so it 
contains a subsequence that strongly converges to a minimizer (by the theorem). 
By uniqueness this minimizer is xo, which contradicts the above inequality. 

Exercise 4.12. Suppose that for gi and gi we get solutions w\ +gi and w\ +32-
Then (<?2 — 5i)|sn = 0. Consider the "difference" of the corresponding equations. 
We come to the same problem for wz = W2 — w\ with / = 0 and the function 
(91 — 92) taken as g. This problem, by the theorem, has a unique solution wj . 
By the structure of the equation of the problem it is evident that w3 = g\ — 32, 
and so wl + g\ = wj + g2-
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