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REAL ANALYSIS AND PROBABILITY

This much admired textbook, now reissued in paperback, offers a clear expo-
sition of modern probability theory and of the interplay between the properties
of metric spaces and probability measures.

The first half of the book gives an exposition of real analysis: basic set
theory, general topology, measure theory, integration, an introduction to func-
tional analysis in Banach and Hilbert spaces, convex sets and functions,
and measure on topological spaces. The second half introduces probability
based on measure theory, including laws of large numbers, ergodic theorems,
the central limit theorem, conditional expectations, and martingale conver-
gence. A chapter on stochastic processes introduces Brownian motion and the
Brownian bridge.

The new edition has been made even more self-contained than before;
it now includes early in the book a foundation of the real number system
and the Stone-Weierstrass theorem on uniform approximation in algebras
of functions. Several other sections have been revised and improved, and
the extensive historical notes have been further amplified. A number of new
exercises, and hints for solution of old and new ones, have been added.

R. M. Dudley is Professor of Mathematics at the Massachusetts Institute of
Technology in Cambridge, Massachusetts.
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Preface to the Cambridge Edition

This is a text at the beginning graduate level. Some study of intermediate
analysis in Euclidean spaces will provide helpful background, but in this
edition such background is not a formal prerequisite. Efforts to make the book
more self-contained include inserting material on the real number system into
Chapter 1, adding a treatment of the Stone-Weierstrass theorem, and generally
eliminating references for proofs to other books except at very few points,
such as some complex variable theory in Appendix B.

Chapters 1 through 5 provide a one-semester course in real analysis. Fol-
lowing that, a one-semester course on probability can be based on Chapters
8 through 10 and parts of 11 and 12. Starred paragraphs and sections, such
as those found in Chapter 6 and most of Chapter 7, are called on rarely, if at
all, later in the book. They can be skipped, at least on first reading, or until
needed.

Relatively few proofs of less vital facts have been left to the reader. I would
be very glad to know of any substantial unintentional gaps or errors. Although
I have worked and checked all the problems and hints, experience suggests
that mistakes in problems, and hints that may mislead, are less obvious than
errors in the text. So take hints with a grain of salt and perhaps make a first
try at the problems without using the hints.

I looked for the best and shortest available proofs for the theorems. Short
proofs that have appeared in journal articles, but in few if any other textbooks,
are given for the completion of metric spaces, the strong law of large numbers,
the ergodic theorem, the martingale convergence theorem, the subadditive
ergodic theorem, and the Hartman-Wintner law of the iterated logarithm.

Around 1950, when Halmos’ classic Measure Theory appeared, the more
advanced parts of the subject headed toward measures on locally compact
spaces, as in, for example, §7.3 of this book. Since then, much of the re-
search in probability theory has moved more in the direction of metric spaces.
Chapter 11 gives some facts connecting metrics and probabilities which fol-
low the newer trend. Appendix E indicates what can go wrong with measures

X



X Preface

on (locally) compact nonmetric spaces. These parts of the book may well not
be reached in a typical one-year course but provide some distinctive material
for present and future researchers.

Problems appear at the end of each section, generally increasing in diffi-
culty as they go along. I have supplied hints to the solution of many of the
problems. There are a lot of new or, I hope, improved hints in this edition.

I have also tried to trace back the history of the theorems to give credit
where it is due. Historical notes and references, sometimes rather extensive,
are given at the end of each chapter. Many of the notes have been augmented
in this edition and some have been corrected. I don’t claim, however, to give
the last word on any part of the history.

The book evolved from courses given at M.I.T. since 1967 and in Aarhus,
Denmark, in 1976. For valuable comments I am glad to thank Ken Alexander,
Deborah Allinger, Laura Clemens, Ken Davidson, Don Davis, Persi Diaconis,
Arnout Eikeboom, Sy Friedman, David Gillman, José Gonzalez, E. Griffor,
Leonid Grinblat, Dominique Haughton, J. Hoffmann-Jgrgensen, Arthur
Mattuck, Jim Munkres, R. Proctor, Nick Reingold, Rae Shortt, Dorothy
Maharam Stone, Evangelos Tabakis, Jin-Gen Yang, and other students and
colleagues.

For helpful comments on the first edition I am thankful to Ken Brown,
Justin Corvino, Charles Goldie, Charles Hadlock, Michael Jansson, Suman
Majumdar, Rimas Norvaisa, Mark Pinsky, Andrew Rosalsky, the late Rae
Shortt, and Dewey Tucker. I especially thank Andries Lenstra and Valentin
Petrov for longer lists of suggestions. Major revisions have been made to
§10.2 (regular conditional probabilities) and in Chapter 12 with regard to
Markov times.

R. M. Dudley



1
Foundations; Set Theory

In constructing a building, the builders may well use different techniques
and materials to lay the foundation than they use in the rest of the building.
Likewise, almost every field of mathematics can be built on a foundation
of axiomatic set theory. This foundation is accepted by most logicians and
mathematicians concerned with foundations, but only a minority of mathe-
maticians have the time or inclination to learn axiomatic set theory in detail.
To make another analogy, higher-level computer languages and programs
written in them are built on a foundation of computer hardware and systems
programs. How much the people who write high-level programs need to know
about the hardware and operating systems will depend on the problem at hand.
In modern real analysis, set-theoretic questions are somewhat more to the
fore than they are in most work in algebra, complex analysis, geometry, and
applied mathematics. A relatively recent line of development in real analysis,
“nonstandard analysis,” allows, for example, positive numbers that are in-
finitely small but not zero. Nonstandard analysis depends even more heavily
on the specifics of set theory than earlier developments in real analysis did.
This chapter will give only enough of an introduction to set theory to define
some notation and concepts used in the rest of the book. In other words,
this chapter presents mainly “naive” (as opposed to axiomatic) set theory.
Appendix A gives a more detailed development of set theory, including a
listing of axioms, but even there, the book will not enter into nonstandard
analysis or develop enough set theory for it.
Many of the concepts defined in this chapter are used throughout mathe-
matics and will, I hope, be familiar to most readers.

1.1. Definitions for Set Theory and the Real Number System

Definitions can serve at least two purposes. First, as in an ordinary dictionary, a
definition can try to give insight, to convey an idea, or to explain a less familiar
idea in terms of a more familiar one, but with no attempt to specify or exhaust
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completely the meaning of the word being defined. This kind of definition will
be called informal. A formal definition, as in most of mathematics and parts
of other sciences, may be quite precise, so that one can decide scientifically
whether a statement about the term being defined is true or not. In a formal
definition, a familiar term, such as a common unit of length or a number, may
be defined in terms of a less familiar one. Most definitions in set theory are
formal. Moreover, set theory aims to provide a coherent logical structure not
only for itself but for just about all of mathematics. There is then a question
of where to begin in giving definitions.

Informal dictionary definitions often consist of synonyms. Suppose, for
example, that a dictionary simply defined “high” as “tall” and “tall” as “high.”
One of these definitions would be helpful to someone who knew one of the
two words but not the other. But to an alien from outer space who was trying
to learn English just by reading the dictionary, these definitions would be
useless. This situation illustrates on the smallest scale the whole problem the
alien would have, since all words in the dictionary are defined in terms of other
words. To make a start, the alien would have to have some way of interpreting
at least a few of the words in the dictionary other than by just looking them up.

In any case some words, such as the conjunctions “and,” “or,” and “but,”
are very familiar but hard to define as separate words. Instead, we might have
rules that define the meanings of phrases containing conjunctions given the
meanings of the words or subphrases connected by them.

At first thought, the most important of all definitions you might expect in
set theory would be the definition of “set,” but quite the contrary, just because
the entire logical structure of mathematics reduces to or is defined in terms of
this notion, it cannot necessarily be given a formal, precise definition. Instead,
there are rules (axioms, rules of inference, etc.) which in effect provide the
meaning of “set.” A preliminary, informal definition of set would be “any
collection of mathematical objects,” but this notion will have to be clarified
and adjusted as we go along.

The problem of defining set is similar in some ways to the problem of
defining number. After several years of school, students “know” about the
numbers 0, 1, 2, ..., in the sense that they know rules for operating with
numbers. But many people might have a hard time saying exactly what
anumber is. Different people might give different definitions of the number 1,
even though they completely agree on the rules of arithmetic.

In the late 19th century, mathematicians began to concern themselves with
giving precise definitions of numbers. One approach is that beginning with
0, we can generate further integers by taking the “successor” or “next larger
integer.”
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If 0 is defined, and a successor operation is defined, and the successor of

any integer n is called n’, then we have the sequence 0,0’, 0”7, 0", . ... Interms
of 0 and successors, we could then write down definitions of the usual inte-
gers. To do this I’ll use an equals sign with a colon before it, “:=,” to mean

“equals by definition.” For example, 1:=0,2:=0",3:=0",4:=0"", and
so on. These definitions are precise, as far as they go. One could produce
a thick dictionary of numbers, equally precise (though not very useful) but
still incomplete, since 0 and the successor operation are not formally de-
fined. More of the structure of the number system can be provided by giving
rules about 0 and successors. For example, one rule is that if m’ = n’, then
m=n.

Once there are enough rules to determine the structure of the nonnegative
integers, then what is important is the structure rather than what the individual
elements in the structure actually are.

In summary: if we want to be as precise as possible in building a rigorous
logical structure for mathematics, then informal definitions cannot be part of
the structure, although of course they can help to explain it. Instead, at least
some basic notions must be left undefined. Axioms and other rules are given,
and other notions are defined in terms of the basic ones.

Again, informally, a set is any collection of objects. In mathematics, the
objects will be mathematical ones, such as numbers, points, vectors, or other
sets. (In fact, from the set-theoretic viewpoint, all mathematical objects are
sets of one kind or another.) If an object x is a member of a set y, this is
written as “x € y,” sometimes also stated as “x belongs to y” or “x isin y.” If
S is a finite set, so that its members can be written as a finite list xq, ..., x,,
then one writes S = {xy, ..., x,,}. For example, {2, 3} is the set whose only
members are the numbers 2 and 3. The notion of membership, “€,” is also
one of the few basic ones that are formally undefined.

A set can have just one member. Such a set, whose only member is x, is
called {x}, read as “singleton x.” In set theory a distinction is made between
{x} and x itself. For example if x = {1, 2}, then x has two members but {x}
only one.

A set A is included in a set B, or is a subset of B, written A C B, if and
only if every member of A is also a member of B. An equivalent statement is
that B includes A, written B D A. To say B contains x means x € B. Many
authors also say B contains A when B D A.

The phrase “if and only if” will sometimes be abbreviated “iff.” For
example, A C B iff for all x,if x € A, then x € B.

One of the most important rules in set theory is called “extensionality.” It
says that if two sets A and B have the same members, so that for any object



4 Foundations; Set Theory

x,x € Aif and only if x € B, or equivalently both A C B and B C A,
then the sets are equal, A = B. So, for example, {2, 3} = {3, 2}. The order in
which the members happen to be listed makes no difference, as long as the
members are the same. In a sense, extensionality is a definition of equality
for sets. Another view, more common among set theorists, is that any two
objects are equal if and only if they are identical. So “{2, 3} and “{3, 2} are
two names of one and the same set.

Extensionality also contributes to an informal definition of set. A set is
defined simply by what its members are—beyond that, structures and rela-
tionships between the members are irrelevant to the definition of the set.

Other than giving finite lists of members, the main way to define specific
sets is to give a condition that the members satisfy. In notation, {x: ...} means
the set of all x such that. . . . For example, {x: (x —4)*> = 4} = {2, 6} = {6, 2}.

In line with a general usage that a slash through a symbol means “not,”
as in @ # b, meaning “a is not equal to b,” the symbol “¢” means “is not a
member of.” So x ¢ y means x is not a member of y, asin 3 ¢ {1, 2}.

Defining sets via conditions can lead to contradictions if one is not careful.
For example, let » = {x:x ¢ x}. Then r ¢ r implies r € r and conversely
(Bertrand Russell’s paradox). This paradox can be avoided by limiting the
condition to some set. Thus {x € A:... x...} means “the set of all x in A
such that ... x....” As long as this form of definition is used when A is
already known to be a set, new sets can be defined this way, and it turns out
that no contradictions arise.

It might seem peculiar, anyhow, for a set to be a member of itself. It will be
shown in Appendix A (Theorem A.1.9), from the axioms of set theory listed
there, that no set is a member of itself. In this sense, the collection r of sets
named in Russell’s paradox is the collection of all sets, sometimes called the
“universe” in set theory. Here the informal notion of set as any collection of
objects is indeed imprecise. The axioms in Appendix A provide conditions
under which certain collections are or are not sets. For example, the universe
is not a set.

Very often in mathematics, one is working for a while inside a fixed set y.
Then an expression such as {x:... x...}isusedtomean {x € y:... x...}.

Now several operations in set theory will be defined. In cases where it may
not be obvious that the objects named are sets, there are axioms which imply
that they are (Appendix A).

There is a set, called @, the “empty set,” which has no members. That is,
forall x, x ¢ @. This set is unique, by extensionality. If B is any set, then 25,
also called the “power set” of B, is the set of all subsets of B. For example,
if B has 3 members, then 25 has 23 = 8 members. Also, 2?2 = {D} # @.
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A N B, called the intersection of A and B, is defined by AN B := {x €
A:x € B}. In other words, A N B is the set of all x which belong to both A
and B. A U B, called the union of A and B, is a set such that for any x, x €
AU B if and only if x € A or x € B (or both). Also, A\B (read “A
minus B”) is the set of all x in A which are not in B, sometimes called the
relative complement (of B in A). The symmetric difference A A B is defined
as (A\B) U (B\A).

N will denote the set of all nonnegative integers 0, 1, 2,.... (Formally,
nonnegative integers are usually defined by defining O as the empty set @, 1 as
{7}, and generally the successor operation mentioned above by n’ = n U {n},
as is treated in more detail in Appendix A.)

Informally, an ordered pair consists of a pair of mathematical objects in
a given order, such as (x, y), where x is called the “first member” and y
the “second member” of the ordered pair (x, y). Ordered pairs satisfy the
following axiom: for all x, y, u, and v, (x, y) = (u, v) if and only if both
x =u and y =v. In an ordered pair (x, y) it may happen that x = y. Ordered
pairs can be defined formally in terms of (unordered, ordinary) sets so that
the axiom is satisfied; the usual way is to set (x, y):={{x}, {x, y}} (as in
Appendix A). Note that {{x}, {x, y}} = {{y, x}, {x}} by extensionality.

One of the main ideas in all of mathematics is that of function. Informally,
given sets D and E, a function f on D is defined by assigning to each x in
D one (and only one!) member f(x) of E. Formally, a function is defined
as a set f of ordered pairs (x, y) such that for any x, y, and z, if (x, y) € f
and (x, z) € f, then y = z. For example, {(2, 4), (—2, 4)} is a function, but
{(4,2), (4, —2)} is not a function. A set of ordered pairs which is (formally)
a function is, informally, called the graph of the function (as in the case
D = E = R, the set of real numbers).

The domain, dom f, of a function f is the set of all x such that for some
v, (x,y) € f.Then y is uniquely determined, by definition of function, and
itis called f(x). The range, ran f, of f is the set of all y such that f(x)=y
for some x.

A function f with domain A and range included in a set B is said to be
defined on A or from A into B. If the range of f equals B, then f is said to be
onto B.

The symbol “+—"" is sometimes used to describe or define a function. A
function f is written as “x — f(x).” For example, “x > x3”or“f:x > x3”
means a function f such that f(x)=x> for all x (in the domain of f).
To specify the domain, a related notation in common use is, for exam-
ple, “f: A~ B,” which together with a more specific definition of f in-
dicates that it is defined from A into B (but does not mean that f(A) = B; to
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distinguish the two related usages of —, A and B are written in capitals and
members of them in small letters, such as x).

If X is any set and A any subset of X, the indicator function of A (on X)
is the function defined by

1 ifxeA
L) = {0 ifx ¢ A.

(Many mathematicians call this the characteristic function of A. In probability
theory, “characteristic function” happens to mean a Fourier transform, to be
treated in Chapter 9.)

A sequence is a function whose domain is either N or the set {1, 2, ...} of
all positive integers. A sequence f with f(n) = x, for all n is often written
as {x,},>1 or the like.

Formally, every set is a set of sets (every member of a set is also a set). If
a set is to be viewed, also informally, as consisting of sets, it is often called a
family, class, or collection of sets. Let } be a family of sets. Then the union
of V is defined by

UV ;= {x:x € Aforsome A € V}.
Likewise, the intersection of a non-empty collection V is defined by
[V := {x:ix € Aforall A € V).

So for any two sets A and B, | J{A, B} = AU B and (\{A, B} = AN B.
Notations such as [ JV and () V are most used within set theory itself. In
the rest of mathematics, unions and intersections of more than two sets are
more often written with indices. If {A,},>; is a sequence of sets, their union
is written as

o0
U A, = U A, = {x:x €A, for somen}.
n n=1
Likewise, their intersection is written as
o0
() An:=[) Au := (x:x € A, for all n}.
n>1 n=l1
The union of finitely many sets Ay, ..., A, is written as
n
U A= UAi ={x:x€A;forsomei =1,...,n},
1<i<n i=1

and for intersections instead of unions, replace “some” by “all.”
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More generally, let I be any set, and suppose A is a function defined on
I whose values are sets A; := A(i). Then the union of all these sets A; is
written

U A; = U A; = {x:x € A, for somei}.
i iel
A set I in such a situation is called an index set. This just means that it is
the domain of the function i — A;. The index set I can be omitted from the
notation, as in the first expression above, if it is clear from the context what
I is. Likewise, the intersection is written as
() Ai :=()Ai == {x:x €A foralli € I}.
i iel

Here, usually, I is a non-empty set. There is an exception when the sets under
discussion are all subsets of one given set, say X. Suppose ¢ ¢ [ and let
A; :=X. Then replacing / by I U {t} does not change (,_; A; if I is non-
empty. In case / is empty, one can set [ ), A =X

Two more symbols from mathematical logic are sometimes useful as ab-
breviations: V means “for all” and 3 means “there exists.” For example,
(Vx € A)(Jy € B) ... means that for all x in A, there is a y in B such that. ...

Two sets A and B are called disjoint iff AN B = @. Sets A; fori € I are
called disjoint iff A; N A; = @ foralli # jin [.

Next, some definitions will be given for different classes of numbers, lead-
ing up to a definition of real numbers. It is assumed that the reader is familiar
with integers and rational numbers. A somewhat more detailed and formal
development is given in Appendix A.4.

Recall that N is the set of all nonnegative integers 0, 1, 2, ..., Z denotes
the set of all integers 0, £1, 42, ..., and Q is the set of all rational numbers
m/n,wherem € Z,n € Z,and n # 0.

Real numbers can be defined in different ways. A familiar way is through
decimal expansions: x is a real number if and only if x = £y, where y =
n+ Zj’;l dj/le, n € N, and each digit d; is an integer from O to 9. But
decimal expansions are not very convenient for proofs in analysis, and they
are not unique for rational numbers of the form m /10* for m € Z, m # 0, and
k € N. One can also define real numbers x in terms of more general sequences
of rational numbers converging to x, as in the completion of metric spaces to
be treated in §2.5.

The formal definition of real numbers to be used here will be by way of
Dedekind cuts, as follows: A cut is a set C C Q such that C ¢ @;C # Q;
whenever g € C,ifr € Qandr < g thenr € C, and there exists s € Q with
s>qgands e C.
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Let R be the set of all real numbers; thus, formally, R is the set of all cuts.
Informally, a one-to-one correspondence between real numbers x and cuts C,
written C = C, or x = x¢, is given by C, = {g € Q: g < x}.

The ordering x < y for real numbers is defined simply in terms of cuts
by C; C C,. A set E of real numbers is said to be bounded above with an
upper bound y iff x < y forallx € E. Then y is called the supremum or least
upper bound of E, written y = sup E, iff it is an upper bound and y < z for
every upper bound z of E. A basic fact about R is that for every non-empty
set E C R such that E is bounded above, the supremum y = sup E exists.
This is easily proved by cuts: C, is the union of the cuts C forall x € E, as
is shown in Theorem A.4.1 of Appendix A.

Similarly, a set F of real numbers is bounded below with a lower bound
vifv < x forall x € F, and v is the infimum of F,v = inf F, iff t < v for
every lower bound ¢ of F. Every non-empty set F' which is bounded below
has an infimum, namely, the supremum of the lower bounds of F' (which are
a non-empty set, bounded above).

The maximum and minimum of two real numbers are defined by
min(x, y) = x and max(x, y) = y if x < y; otherwise, min(x, y) = y and
max(x, y) = x.

For any real numbers a < b, let [a, b] := {x € R:a < x < b}.

For any two sets X and Y, their Cartesian product, written X x Y, is defined
as the set of all ordered pairs (x, y) for x in X and y in Y. The basic example
of a Cartesian product is R x R, which is also written as R? (pronounced
r-two, not r-squared), and called the plane.

Problems
1. Let A :={3,4, 5} and B := {5, 6, 7}. Evaluate: (a) AU B. (b) AN B.
(c) A\B.(d) AAB.
2. Show that ¢ # {¢} and {?} # {{#}}.
3. Which of the following three sets are equal? (a) {{2, 3}, {4}}; (b) {{4},
{2, 3} () {4}, {3, 2}}.
4. Which of the following are functions? Why?
(@ {(1,2),(2,3), 3, 1)}.
(b) {(1,2),(2,3), (2, 1)}.
(© {2, 1), (3, 1), (1, 2)}.
(@ {(x,y) e R®x =y}
() {(x,y) e R%y = x?}.
5. For any relation V (that is, any set of ordered pairs), define the domain of
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V as {x: (x, y) € V for some y}, and the range of V as {y: (x, y) € V for
some x}. Find the domain and range for each relation in the last problem
(whether or not it is a function).

6. Let Aj; ;=R x[j—1,jland Ay; :=[j —1,j] x Rfor j =1, 2.
Let B == o, (V=) Amn and C := (_, U2_; Ama. Which of the
following is true: B C C and/or C C B? Why?

7. Let f(x) :=sin x for all x € R. Of the following subsets of R, which
is f into, and which is it onto? (a) [—2, 2]. (b) [0, 1]. (c) [—1,1].
(d) [—m, 7]

8. How is Problem 7 affected if x is measured in degrees rather than radians?

9. Of the following sets, which are included in others? A := {3, 4, 5}; B :=
{{3,4},5};C := {5, 4}; and D := {{4, 5}}. Assume that no nonobvious
relations, such as 4 = {3, 5}, are true. More specifically, you can assume
that for any two sets x and y, at most one of the three relations holds:
X € y,x = y,ory € x, and that each nonnegative integer k is a set with
k members. Please explain why each inclusion does or does not hold.
Sample: If {{6, 7}, {5}} C {3, 4}, then by extensionality {6, 7} = 3 or 4,
but {6, 7} has two members, not three or four.

10. Let I := [0, 1]. Evaluate (., [x, 2] and (), [x, 2].

11. “Closed half-lines” are subsets of R of the form {x € R:x <b} or {x €
R: x > b} for real numbers b. A polynomial of degree n on R is a function
X = a,x" + -+ + ajx + ap with a, # 0. Show that the range of any
polynomial of degree n > 1 is R for n odd and a closed half-line for
n even. Hints: Show that for large values of |x|, the polynomial has the
same sign as its leading term a,x" and its absolute value goes to oo.
Use the intermediate value theorem for a continuous function such as a
polynomial (Problem 2.2.14(d) below).

12. A polynomial on R? is a function of the form (x,y) >
> 0<i<k.0<j<k 4ijx'y’. Show that the ranges of nonconstant polyno-
mials on R? are either all of R, closed half-lines, or open half-lines
(b, ) :={x € Rix > b} or (—o0, b) := {x € R:x < b}, where each
open or closed half-line is the range of some polynomial. Hint: For one
open half-line, try the polynomial x% + (xy — 1)2.

1.2. Relations and Orderings

A relation is any set of ordered pairs. For any relation E, the inverse relation
is defined by E~! := {(y, x): (x, y) € E}. Thus, a function is a special kind
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of relation. Its inverse f~! is not necessarily a function. In fact, a function
f is called 1-1 or one-to-one if and only if f~! is also a function. Given a
relation E, one often writes x E'y instead of (x, y) € E (this notation is used
not for functions but for other relations, as will soon be explained). Given a
set X, arelation E C X x X is called reflexive on X iff x Ex for all x € X.
E is called symmetric iff E = E~'. E is called transitive iff whenever xE'y
and yEz, we have x Ez. Examples of transitive relations are orderings, such
asx <y.

A relation E C X x X is called an equivalence relation iff it is reflexive
on X, symmetric, and transitive. One example of an equivalence relation is
equality. In general, an equivalence relation is like equality; two objects x and
y satisfying an equivalence relation are equal in some way. For example, two
integers m and n are said to be equal mod p iff m — n is divisible by p. Being
equal mod p is an equivalence relation. Or if f is a function, one can define
an equivalence relation Ef by xEry iff f(x) = f(y).

Given an equivalence relation E, an equivalence class is a set of the form
{y € X: yEx} for any x € X. It follows from the definition of equivalence
relation that two equivalence classes are either disjoint or identical. Let
f&x):={yeX:yEx}. Then f is a function and x E'y if and only if f(x)=
f(y), so E=Ey, and every equivalence relation can be written in the
form E.

A relation E is called antisymmetric iff whenever x Ey and yEx, then
x = y.Given aset X, a partial ordering is a transitive, antisymmetric relation
E C X x X. Then (X, E) is called a partially ordered set. For example, for
any set Y, let X = 2" (the set of all subsets of Y). Then (2, C), for the usual
inclusion C, gives a partially ordered set. (Note: Many authors require that a
partial ordering also be reflexive. The current definition is being used to allow
not only relations ‘<’ but also ‘<’ to be partial orderings.) A partial ordering
will be called strictif x Ex does not hold for any x. So “strict” is the opposite of
“reflexive.” For any partial ordering E, define the relation <by x < yiff (xEy
orx = y). Then <is areflexive partial ordering. Also, define the relation < by
x < yiff(x Eyandx # y). Then < is astrict partial ordering. For example, the
usual relations < and < between real numbers are connected in the way just
defined. A one-to-one correspondence between strict partial orderings E and
reflexive partial orderings F onaset X isgivenby F = EUD and E = F\D,
where D is the “diagonal,” D := {{x, x): x € X}. From here on, the partial
orderings considered will be either reflexive, usually written < (or >), or
strict, written < (or >). Here, as usual, “<” is read “less than,” and so forth.

Two partially ordered sets (X, E) and (Y, G) are said to be order-
isomorphic iff there exists a 1-1 function f from X onto Y such that for any
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uand x in X, uEx iff f(u)Gf(x). Then f is called an order-isomorphism.
For example, the intervals [0, 1] and [0, 2], with the usual ordering for
real numbers, are order-isomorphic via the function f(x)=2x. The interval
[0, 1] is not order-isomorphic to R, which has no smallest element.

From here on, an ordered pair (x, y) will often be written as (x, y) (this is,
of course, still different from the unordered pair {x, y}).

A linear ordering E of X is a partial ordering E of X such that for all x and
y € X,either xEy, yEx,or x = y. Then (X, E) is called a linearly ordered
set. The classic example of a linearly ordered set is the real line R, with its
usual ordering. Actually, (R, <), (R, <), (R, >), and (R, >) are all linearly
ordered sets.

If (X, E)is any partially ordered set and A is any subset of X, then {(x, y) €
E:x € Aand y € A} is also a partial ordering on A. Suppose we call it E4.
For most orderings, as on the real numbers, the orderings of subsets will be
written with the same symbol as on the whole set. If (X, E) is linearly ordered
and A C X, then (A, E,) is also linearly ordered, as follows directly from
the definitions.

Let W be a set with a reflexive linear ordering <. Then W is said to be
well-ordered by < iff for every non-empty subset A of W there is a smallest
x € A,sothat forall y € A, x < y. The corresponding strict linear ordering
< will also be called a well-ordering. If X is a finite set, then any linear
ordering of it is easily seen to be a well-ordering. The interval [0, 1] is not
well-ordered, although it has a smallest element 0, since it has subsets, such
as {x:0 < x < 1}, with no smallest element.

The method of proof by mathematical induction can be extended to well-
ordered sets, as follows. Suppose (X, <) is a well-ordered set and that we
want to prove that some property holds for all elements of X. If it does not,
then there is a smallest element for which the property fails. It suffices, then,
to prove that for each x € X, if the property holds for all y < x, then it holds
for x. This “induction principle” will be treated in more detail in §1.3.

Problems
1. For any partial ordering E, show that E~! is also a partial ordering.

2. For two partially ordered sets (A, <) and (B, <), the lexicographical or-
dering on the Cartesian product A x B is defined by (a, b) < (c, d) iff
a < cor(a=candb < d). (For example, if A and B are both an alpha-
bet with the usual ordering, then we have the dictionary or “alphabetical”
ordering of two-letter words or strings.) If the orderings on A and B are
linear, show that the lexicographical ordering is linear on A x B. If A
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and B are well-ordered by the given relations, show that A x B is also
well-ordered.

3. Instead, let (a, b) < (c,d) iff botha < c and b < d. Show that this is
a partial ordering. If A and B each contain more than one element, show
that A x B is never linearly ordered by such an ordering.

4. OnR?let (x, yVE(u,v)iffx +y=u+v, (x, y)F(u,v)iffx+y < u+v,
and (x, y)G(u, v) iff x +u < y+v. Which of E, F, and G is an equiva-
lence relation, a partial ordering, or a linear ordering? Why?

5. For sequences {x,} of real numbers let {x,}E{y,} iff lim,_ ox, —y, =0
and {x,,} F{y,} ifflim,_ oox, —y, = 1. Which of E and F is an equivalence
relation and/or a partial ordering? Why?

6. For any two relations £ and F on the same set X, define a relation
G :=E o F by xGz iff for some y, xEy and y Fz. For each of the fol-
lowing properties, if £ and F both have the property, prove, or disprove
by an example, that G also has the property: (a) reflexive, (b) symmetric,
(c) transitive.

7. Refer to Problem 6 and answer the same question in regard to the following
properties: (d) antisymmetric, (e) equivalence relation, (f) function.

*1.3. Transfinite Induction and Recursion

Mathematical induction is a well-known and useful method of proving facts
about nonnegative integers. If F'(n) represents a statement that one wants to
prove for all n € N, and a direct proof is not apparent, one first proves F(0).
Then, in proving F(n + 1), one can assume that F(n) is true, which is often
helpful. Or, if you prefer, you can assume that F(0), F(1), ..., F(n) are all
true. More generally, let (X, <) be any partially ordered set. A subset Y C X
will be called inductive if, for every x € X suchthaty € Y forall y € X such
that y < x, wehave x € Y.If X has aleastelement x, then therearenoy < x,
so x must belong to any inductive subset Y of X. In ordinary induction, Y is
the set of all n for which F(n) holds. Proving that Y is inductive gives a proof
that Y =N, so that F(n) holds for all n. In R, the set (—o0, 0) is inductive, but
itis not all of R. The set N is well-ordered, but R is not: the set {x e R: x > 1}
has no least element. One of the main advantages of well-orderings is that
they allow the following extension of induction:

1.3.1. Induction Principle Let X be any set well-ordered by a relation <.
Let Y be any inductive subset of X. Then ¥ = X.
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Proof. If X\Y = @, the conclusion holds. Otherwise, if not, let y be the least
element of X\Y. Then x € Y for all x < y (perhaps vacuously, if y is the
least element of X), so y € Y, a contradiction. |

For any linearly ordered set (X, <), an initial segment is a subset ¥ C X
such that whenever x < y and y € Y, then also x € Y. Then if (X, <) is the
real line with usual ordering and Y an initial segment, then either ¥ = X or,
for some y, either Y = {x:x < y}orY = {x:x < y}.

In ordinary mathematical induction, the set (X, <) is order-isomorphic
to N, the set of nonnegative integers, or to some initial segment of it (finite
integer) with usual ordering. Transfinite induction refers to induction for
an (X, <) with a more complicated well-ordering. One example is “double
induction.” To prove a statement F'(m, n) for all nonnegative integers m and
n, one can first prove F(0, 0). Then in proving F(m, n) one can assume that
F(j, k)istrueforall j <mandall k € N, and for j =m and k < n. (In this case
the well-ordering is the “lexicographical” ordering mentioned in Problem 2 of
§1.2.) Other well-orderings of N x N may also be useful. Much of set theory
is concerned with well-orderings more general than those of sequences, such
as well-orderings of R, although these are in a sense nonconstructive (well-
ordering of general sets, and of R in particular, depends on the axiom of
choice, to be treated in §1.5).

Another very important method in mathematics, definition by recursion,
will be developed next. In its classical form, a function f is defined by speci-
fying f(0), then defining f(n) in terms of f(n — 1) and possibly other values
of f(k) for k < n. Such recursive definitions will also be extended to well-
ordered sets. For any function f and A C dom f, the restriction of f to A is
defined by f [ A := {{x, f(x)):x € A}.

1.3.2. Recursion Principle Let (X, <) be a well-ordered set and Y any set.
For any x € X, let I(x) := {u € X:u < x}. Let g be a function whose do-
main is the set of all j such that for some x € X, j is a function from 7(x)
into Y, and such that ran g C Y. Then there is a unique function f from X
into Y such that for every x € X, f(x) = g(f [ I(x)).

Note. If b is the least element of X and we want to define f(b) = c, then we
set g(®) = ¢ and note that 1(b) = @.

Proof. If X = @, then f = @ and the conclusion holds. So suppose X is
non-empty and let b be its smallest element. Let J(x) := {u € X:u < x} for
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eachx € X.Let T bethesetofall x € X such that on J(x), there is a function
f suchthat f(u) = g(f [ I(u))forallu € J(x).Letus show thatif such an f
exists, it is unique. Let / be another such function. Then h(b) = g(@) = f(b).
By induction (1.3.1), for each u € J(x), h(u) = g(f [ I(u)) = f(u). So f
is unique. If x < u for some u in T and f as above is defined on J(u), then
f I J(x) has the desired properties and is the f for J(x) by uniqueness. Thus
T is an initial segment of X. The union of all the functions f forall x € T is
a well-defined function, which will also be called f.If T # X, let u be the
least element of X\7T. But then T = I(«#) and f U {{u, g(f))} is a function
on J(u) with the desired properties, so u € T, a contradiction. So f exists.
As it is unique on each J(x), it is unique. O

For any function f on a Cartesian product A x B, one usually writes f(a, b)
rather than f({a, b)). The classical recursion on the nonnegative integers can
then be described as follows.

1.3.3. Corollary (Simple Recursion) Let Y be any set, ¢ € Y, and h any
function from N x Y into Y. Then there is a function f from N into Y with
f(@O)=candforeachn € N, f(n 4+ 1) = h(n, f(n)).

Proof. To apply 1.3.2, let g(¢) = c. Let j be any function from some non-
empty I(n) into Y. (Note that /(n) is empty if and only if n = 0.) Then
n — 1 is the largest member of /(n). Let g(j) = h(n — 1, j(n — 1)). Then
the function g is defined on all such functions j, and 1.3.2 applies to give a
function . Now f(0) = c,andforanyn € N, f(n+1)=g(f [I(n+ 1)) =
h(n, f(n)). O

Example. Let t be a function with real values defined on N. Let

n

f)=>"t()).

j=0

To obtain f by simple recursion (1.3.3),letc =¢(0)and h(n, y)=t(n+1)+y
foranyn € Nand y € R. A computer program to compute f, given a program
for ¢, could well be written along the lines of this recursion, which in a sense
reduces the summation to simple addition.

Example. General recursion (1.3.2) can be used to define the function f such
that forn = 1,2, ..., f(n) is the nth prime: f(1) = 2, f(2) = 3, f(3) =
5, f(4) =17, f(5) = 11, and so on. On the empty function, g is defined as
2,and so f(1) =2.Given jon J(n) = {1,2,...,n} = I(n + 1), let g(j)
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be the least k > j(n) such that k is not divisible by any of j(1),..., j(n).
Such a k always exists since there are infinitely many primes. We will have
f() < f(2) < ---,andin constructing f, g will be applied only to functions
j with j(1) < j(2) < --- < j(n) (since each j(i) = f(i)). Note that all the
values j(1),..., j(n), not only j(n), are used in defining f(n + 1) = g(j).

Problems

1. To define the factorial function f(n) = n! by simple recursion, how can ¢
and 4 in Corollary 1.3.3 be chosen? For £ to serve this purpose, for which
n and x (if any) are the values of i(n, x) uniquely determined?

2. Let (X, <) be a well-ordered set. Let > be the reversed ordering as usual,
that is, x > y means y < x. Suppose that (X, >) is also well-ordered.
Let f be a function from N onto X. Show that f cannot be one-to-one.
Hint: If it is, then define & by recursion on N such that 4(0) is the least
element of X for <, k(1) the next-least, and so on. The range of / has no
largest element.

3. Given a partially ordered set (X, <), a subset A C X, and an element
x € A, x is called a minimal element of A iff there is no other y € A
with y < x. Then (X, <) will be called min-ordered iff every non-empty
subset of it has a minimal element. (Note that any well-ordered set is
min-ordered.)

(a) Show that the induction principle (1.3.1) holds with “min-ordered” in
place of “well-ordered.”

(b) Do likewise for the recursion principle (1.3.2).

4. Refer to Problem 3. On N x N, define an ordering by (i, k) < (m, n) iff
i <mandk <n.
(a) Show that then (N x N, <) is min-ordered.
(b) If A :={(m,n) € N x N:m +n > 4}, what are the minimal elements
of A? Show that (N x N, <) is not well-ordered.

Note: When mathematics is being built on a set-theoretic foundation
and N has just been defined, the definitions of addition and then multi-
plication can be done by recursion either on a lexicographical ordering
of N x N or by the min-ordering just defined (see Appendix A.3 and
references there).

5. Refer again to Problem 3. Let (X, <) be a partially ordered set such that
the only inductive subset of X is X (as in the induction principle). Show
that (X, <) must be min-ordered.
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6. Let (X, <) be a partially ordered set on which a function f is defined
such that f(x) < x for every x € X. Prove by recursion that there exists a
function g from N into X such that g(n + 1) < g(n) for all n.

1.4. Cardinality

Two sets X and Y are said to have the same cardinality iff there is a 1-1
function from X onto Y. We would like to say that two such sets have the
“same number of elements,” but for infinite sets, it is not necessarily clear
what a “number” is. A set X is said to be finite iff it has the same cardinality
as some n € N (where n is represented as the set {0, 1, ..., n — 1}, so that
it has n members). Otherwise, X is infinite. For example, N is infinite. X is
called countable iff there is a function f from N onto X, countably infinite if
X is also infinite. A set is uncountable iff it is not countable.

As an example, to see that N and N x N have the same cardinality, let
f(@m,n):=2"2n+ 1) — 1. Then f is 1-1 from N x N onto N.

X is said to have smaller cardinality than Y iff there is a 1-1 function from
X into Y, but no such function onto Y. The following fact shows that this
definition is coherent.

1.4.1. Equivalence Theorem If A and B are sets, f is a 1-1 function from
A into B, and g is a 1-1 function from B into A, then A and B have the same
cardinality.

Proof. For any function j and set X, let j[X] := {j(x):x € X} =ran(j | X).
Forany X C A, let F(X) := A\g[B\ f[X]]. For any U suchthat X C U C
A, we have F(X) C F(U), since as X gets larger, B\ f[X] gets smaller,
so F(X) gets larger. Let W :={X C A: X C F(X)} and C := | W. For any
ueC, we have ue X for some XeW,soueX C F(X)CF(C). Thus
C C F(C)and F(C) C F(F(C)). So F(C) € W, and by definition of
C,F(C) C C. Thus F(C) = C. Then by definition of F, g is 1-1 from
B\ f[C]onto A\F(C) = A\C.In any case, f is 1-1 from C onto f[C]. Let
h(x):= f(x)ifx € C,h(x) := g~'(x) if x € A\C. Then h is 1-1 from A
onto B. O

For any finiten = 0, 1, 2, ..., we have n < 2": for example, 0 < 1,1 <
2,2 < 4,3 < 8, and so forth. For a finite set X with n elements, the collection
2% of all subsets of X has 2" elements. The fact that 2% is larger than X is
true also for arbitrarily large (infinite) sets.
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1.4.2. Theorem For every set X, X has smaller cardinality than 2%.

Proof. Let f(x) := {x}. This gives a 1-1 function from X into 2X. Suppose
g is a function from X onto 2¥. Let A := {x € X:x ¢ g(x)}. Then g(y) = A
forsome y.If y € A,theny ¢ g(y) = A,butify ¢ A = g(y),theny € A,a
contradiction. O

1.4.3. Corollary N has smaller cardinality than 2N, so 2V is uncountable.

The collection 2N of all subsets of a countably infinite set is said to have car-
dinality c, or the cardinality of the continuum, in view of the following fact.

1.4.4. Theorem The set R of real numbers and the interval [0, 1] := {x €
R:0 < x < 1} both have cardinality c.

Proof. See the problems below. O

Are there cardinalities between those of N and 21? This is known as the
continuum problem. The conjecture that there are no such cardinalities, so
that every uncountable set of real numbers has the same cardinality as all of
R, is called the continuum hypothesis. It turns out that the problem cannot be
settled from the usual axioms of set theory (including the axiom of choice;
see the notes to Appendix A.2). So one can assume either the continuum
hypothesis or its negation without getting a contradiction. In this book, the
negation is never assumed. When, occasionally, the continuum hypothesis is
assumed, it will be pointed out (while the axiom of choice, in the next section,
may sometimes be taken for granted).

Problems

1. Prove that for any countably infinite set S, there is a 1-1 function from N
onto S. Hint: Let h be a function from N onto S. Define f using /# and
recursion. The problem is to show that some form of recursion actually
applies (1.3.2).

2. To understand the situation in the equivalence theorem: if, in the notation
of 1.4.1, f(x) = y and g(v) = u, say x is an ancestor of y and v an
ancestor of u. Also, say that any ancestor of an ancestor is an ancestor. If
is a 1-1 function from A onto B such that for all x in A, either A(x) = f(x)
or h(x) = g~'(x), show that:
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(a) If x has a finite, even number of ancestors, say 2n, then h(x) = f(x).
Hints: Use induction on n.

(b) If x has a finite, odd number of ancestors, then h(x) = g~ !(x).

(c) If x has infinitely many ancestors, then how is #(x) chosen according
to the proof of the equivalence theorem (1.4.1)?

3. If X is uncountable and Y is a countable subset of X, show that X\ Y has
the same cardinality as X, assuming that N has smaller cardinality than
X\Y (which cannot be proved in general without the axiom of choice, to
be treated in §1.5). Hint: Let B be a countably infinite subset of X\Y.
Then B and B U Y have the same cardinality.

4. Prove Theorem 1.4.4. Hints: Use the equivalence theorem 1.4.1. To show
that [0, 1], the open interval (0, 1), and R have the same cardinality, define
a 1-1 function from R onto (0, 1) of the form a + b - tan™'x for suitable
constantsa andb. If A C N,letx(A) := ", _, 1/ 2"+ (binary expansion).
This function is not quite 1-1, but use it and check that Problem 3 applies
to show that [0, 1] has cardinality c.

5. Let X be a non-empty set of cardinality less than or equal to ¢ and let Y
have cardinality c. Show that X x Y has cardinality c¢. Hint: Reduce to the
case where X has cardinality c. Show that 2 x 2" has the same cardinality
as 2N,

1.5. The Axiom of Choice and Its Equivalents

In Euclid’s geometry, the “parallel postulate” was long recognized as hav-
ing a weaker sense of intuitive rightness than most of the other axioms and
postulates. Eventually, in the 19th century, “non-Euclidean geometry” was
invented, in which the parallel postulate is no longer assumed. In set theory,
the following axiom is, likewise, not always assumed; although it has been
shown to be consistent with the other axioms, it is powerful, giving “exis-
tence” to structures that are less concrete, popular, or accessible to intuition
than garden-variety sets.

Axiom of Choice (AC). Let A be any function on a set I such that A(x) # @
for all x € I. Then there is a function f such that f(x) € A(x) forall x € I.

The Cartesian product IT,c; A(x) is defined as the set of all functions f on
I suchthat f(x) € A(x)forallx € I.Then AC says that the Cartesian product
of non-empty sets is non-empty. Here [ is often called an index set and f a
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choice function. The following argument may seem to “prove” the axiom of
choice: since for each x, A(x) is non-empty, it contains some element, which
we call f(x). Then f is the desired choice function. This argument is actually
valid if [ is finite. If I is infinite, however, the problem is whether there is
any systematic rule, which can be written down in finitely many symbols (as
it always can if 7 is finite), for choosing a specific member of A(x) for each
x. In some cases the answer is just not clear, so one may have to choose an
element f(x) in some sense at random. The axiom of choice makes it legal
for one to suppose an infinite set of such random choices can be made.
Here is another form of the axiom of choice:

AC'. Let X be any set and I := 2%\ {}, the set of all non-empty subsets of
X. Then there is a function f from / into X such that f(A) € A for each
Ael.

It will be shown that AC and AC’ are equivalent. Assuming AC, to prove
AC/, let A be the identity function on I, A(B) = B for any B € I. Then AC
implies AC’. On the other hand, assuming AC/, given any function A whose
values are non-empty sets, take X as the union of the range of A. Then each
value of A is a non-empty subset of X and AC follows from AC'.

The axiom of choice is widely used in other, equivalent forms. The equiv-
alence will be proved for some of the best-known forms. A chain is a linearly
ordered subset of a partially ordered set (with the same ordering). In a partially
ordered set (X, <), an element z of X is called maximal iff there is no w with
z < w. If X is not linearly ordered, it may have many maximal elements.
For example, for the trivial partial ordering whose strict partial ordering <
is empty, every element is maximal. A maximum of X isa 'y € X such that
x < yforall x € X. A maximum is a maximal element, but the converse is
often not true. If an ordering is not specified, then inclusion is the intended
ordering.

As an example of some of these notions, let X be the collection of all
intervals [a, b] in R of length b — a < 2 (here a < b). These intervals are
partially ordered by inclusion. Any interval of length equal to 2 is a maximal
element. There is no maximum.

Here are three statements to be shown equivalent to AC:

Well-ordering principle (WO): Every set can be well-ordered.
Hausdorff’s maximal principle (HMP): For every partially ordered set
(P, <) there is a maximal chain L C P.
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Zorn’s Lemma (ZL): Let (P, <) be a partially ordered set such that for
every chain L C P, there is an upper bound y € P, thatis, x < y for
all x € L. Then P has a maximal element.

1.5.1. Theorem AC, WO, HMP, and ZL are all equivalent.

Note. Strictly speaking, the equivalence stated in Theorem 1.5.1 holds if we
assume a system of axioms for set theory, such as the Zermelo-Fraenkel
system, given in Appendix A. But the proof will proceed on the basis of the
definitions given so far; it will not call on any axioms explicitly.

Proof. AC will be used in the form AC’. AC implies WO: given a set X, a
choice function ¢ which selects an element of each non-empty subset of X, a
subset A C X, and an ordering < on A, (A, <) will be called c-ordered iff <
is a well-ordering on A such that forevery x € A, x = c(X\{y € A1y < x}).
For any two c-ordered subsets (A, <) and (B, 1), it will be shown that one is
an initial segment of the other (with the same ordering). If not, let x be the
least element of A such that {u € A:u < x} is not an initial segment of B.
Such an x exists, since any union of initial segments is an initial segment.
Then D := {u € A:u < x} is an initial segment of both A and B on which
the two orderings agree. Since A is c-ordered, x = c(X\D). If B\D # @,
let y be its least element for A (see Figure 1.5). Then since B is c-ordered,
y = ¢(X\D) = x, contradicting the choice of x. Thus, B = D, an initial
segment of A.

Let C be the union of all c-ordered sets and < the union of their orderings.
Then (C, <) is c-ordered. If C # X, let z = ¢(X\C) and extend the definition
of the ordering by setting x < z forall x € C (and z < 7). Then (C U {z}, <)
is c-ordered, a contradiction, so X is well-ordered.

WO implies HMP: Let (X, <) be a partially ordered set and let W be a
well-ordering of X. Let ¢ be the least element of X for W (for X empty there
is no problem). Define a function f by recursion on (X, W) (1.3.2) such that
f(@)=1tand

x if{x}U{f(y): yWx, y # x}is a chain for <

f(x) =1+ otherwise, so x is not comparable for < to some y
with yWx, and f(y) = y.

x
L<
y B

Figure 1.5
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Then the range of f is a maximal chain, as desired.

HMP implies ZL: Let (P, <) be a partially ordered set in which every
chain has an upper bound. By HMP take a maximal chain L. Let z be an
upper bound for L. Then if for some w, z < w, L U {w} is a chain strictly
including L, a contradiction, so z is maximal.

ZL implies AC: Given a set X, let F be the set of all choice func-
tions whose domains are subsets of 2X\{#}. Then F is partially ordered by
inclusion. Any chain in F has its union in F. Thus F has a maximal ele-
ment f.If dom f # 2¥\{®}, then for any A in the non-empty collection
2X\{pH\dom f, and any x in such a (non-empty) set A, f U {(A,x)} € F,
contradicting the maximality of f. Thus f is a choice function on all of
2X\{®}. So AC’ holds, and thus AC. O

Problems

1. Prove, without applying Theorem 1.5.1, that the well-ordering principle
implies AC. Caution: Is it clear that the possibly very large family of sets
A(x) can all be well-ordered simultaneously, so that there is a function f
on [ such that for each x € I, f(x) is a well-ordering of A(x)? Hint: Use
AC.

2. Prove it is equivalent to AC that in every partially ordered set, every chain
is included in a maximal chain.

3. In the partially ordered set N x N with the ordering (j, k) < (m, n) iff
j < m and k < n, consider the sequence (n,n), forn = 0,1,2,....
Describe all the maximal chains that include the given sequence. Do any
of these chains have upper bounds?

4. Find a partially ordered set (X, <), with as few elements as possible, for
which the hypothesis of Zorn’s lemma holds (every chain has an upper
bound) but which does not have a maximum.

5. Show, assuming AC, that any Cartesian product of finite sets is either finite
or uncountable (can’t be countably infinite).

6. Let X be the collection of all intervals [a, b] of length O < b —a < 2,
with inclusion as partial ordering. Show that every chain in X has an upper
bound.

7. In the application of the recursion principle 1.3.2 in the proof that WO
implies HMP, how should g be defined? Show that the resulting argument
does prove that WO implies HMP.

8. Let A and B be two sets such that there exists a function f from A onto B
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and a function g from B onto A. Show, assuming AC, that A and B have
the same cardinality. Hint: If h(y) € f~'({y}) for all y in B, then h is 1-1
from B into A.

Notes
§81.1-1.3 Notes on set theory are given at the end of Appendix A.

§1.4 Georg Cantor (1874) first proved the existence of an uncountable set, the set of
all real numbers. Then, in 1892, he proved that every set X has smaller cardinality
than its power set 2X . The equivalence theorem came up as an open problem in Cantor’s
seminar in 1897. It was solved by Felix Bernstein, then a 19-year-old student. Bernstein’s
proof was given in the book of Borel (1898). Meanwhile, E. Schroder published another
proof. The equivalence theorem has often been called the Schroder-Bernstein theorem.
Korselt (1911), however, pointed out an error in Schroder’s argument. In a letter quoted
in Korselt’s paper, Schroder gives full credit for the theorem to Bernstein. For further
notes and references on the history and other proofs of these facts, see Fraenkel (1966,
pp- 70-80). Thanks to Sy Friedman for telling me the proof of 1.4.1. Bernstein also
worked in statistics (see Frewer, 1978) and in genetics; he showed that human blood
groups A, B, and O are inherited through three alleles at one locus (Nathan, 1970;
Boorman et al., 1977, pp. 41-43).

§1.5 Entire books have been published on the axiom of choice and its equivalents (Jech,
1973; Rubin and Rubin, 1985). Ernst Zermelo (1904, 1908a, 1908b) and Bertrand Russell
(1906) formulated AC and used it to prove WO. Hausdorff (1914, pp. 140-141) gave
his maximal principle (HMP) and showed that it follows from WO. Hausdorff (1937;
1978 transl., p. 5) says “most of the theory of ordered sets” from the first edition was
left out of later editions. Zorn (1935) brought in a form of what is now known as Zorn’s
Lemma. (Zorn stated ZL in the case where the partial ordering is inclusion and the upper
bound is the union.) He emphasized its usefulness in algebra. It is rather easily seen to
be equivalent to HMP. Apparently Zorn was the first to point out that a statement such
as ZL or HMP implies AC, although Zorn never published his proof of this (Rubin and
Rubin, 1963, p. 11).
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2
General Topology

General topology has to do with, among other things, notions of convergence.
Given a sequence x,, of points in a set X, convergence of x,, to a point x can
be defined in different ways. One of the main ways is by a metric, or distance
d, which is nonnegative and real-valued, with x, — x meaning d(x,, x) —
0. The usual metric for real numbers is d(x, y) = |x — y|. For the usual
convergence of real numbers, a function f is called continuous if whenever
X, — x in its domain, we have f(x,) — f(x).

On the other hand, some interesting kinds of convergence are not defined by
metrics: if we define convergence of a sequence of functions f;, “pointwise,”
so that f, — f means f,(x)— f(x) for all x, it turns out that (for a large
enough class of functions defined on an uncountable set) there may be no
metric e such that f, — f is equivalent to e( f,,, f) — 0.

Given a sense of convergence, we can call a set F' closed if whenever x; € F
for all i and x; — x we have x € F also. Any closed interval [a, b] := {x:a <
x < b} is an example of a closed set. The properties of closed sets F' and their
complements U := X\ F, which are called open sets, turn out to provide the
best and most accepted way of extending the notions of convergence, conti-
nuity, and so forth to nonmetric situations. This leads to kinds of convergence
(nets, filters) more general than those of sequences. For example, pointwise
convergence of functions is handled by “product topologies,” to be treated
in §2.2. Some readers may prefer to look at §2.3 and parts of §§2.4-2.5 on
metrics, which may be more familiar, before taking up §§2.1-2.2.

2.1. Topologies, Metrics, and Continuity

From here on through the rest of the book, the axiom of choice will be assumed,
without being mentioned in each instance.

Definition. Given a set X, a topology on X is a collection 7 of subsets of X
(in other words, 7 C 2%) such that

24
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(HhpeTand X € 7.
(2) Forevery U € T andV € T,wehave UNV € 7.
(3) Forany U C 7, we have | JU € 7.

When a topology has been chosen, its members are called open sets. Their
complements, F = X\U, U € 7, are called closed sets. The pair (X, 7) is
called a topological space. Members of X are called points.

In R, there is a “usual topology” for which the simplest examples of open
sets are the open intervals (a, b) := {x:a <x <b}. Here (X,7Y) is also a
notation for the ordered pair (X, Y). These notations are both in general use
in real analysis. The context should indicate which one is meant for X and Y
real numbers.

General open sets in R are arbitrary unions of open intervals (it will turn
out later that any such union can be written as a countable union). Closed
sets, which are the complements of the open sets, are also the sets which are
closed in the sense defined in the introduction to this chapter, for the usual
convergence of real numbers.

There are sets that are neither closed nor open, such as the “half-open
intervals” [a, b) :={x:a <x <b}or(a,b]:={x:a < x < b}fora < binR.
On the other hand, in any topological space X, since ¢ and X are both open
and are complements of each other, they are also both closed.

Although in axiomatic set theory, as in Appendix A, all mathematical
objects are represented by sets, it’s easier to think of a point as just that,
without any members or other internal structure. Such points will usually
be denoted by small letters, such as x and y. Sets of points will usually be
denoted by capital letters, such as A and B. Sets of such sets will often be
called by other names, such as “collections” or “families” of sets, and denoted
by script capitals, such as A and B. (Later, in functional analysis, functions
will in turn be considered as points for some purposes.)

From (2) in the definition of topology and induction, any finite intersection
of open sets (that is, an intersection of finitely many open sets) is open. An
arbitrary union of open sets is open, according to (3).

For any set X, the power set 2% is a topology, called the discrete topology
on X. For this topology, all sets are open and all are closed. If X is a finite
set, then a topology on X will be assumed to be discrete unless some other
topology is provided.

When we are dealing for the time being with subsets of a set X, such as a
topological space, then the complement of any set A C X is defined as X\ A.
Thus the complement of any open set is closed.
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Definition. Given a set X, a pseudometric for X is a function d from X x X
into {x € R:x > 0} such that

(1) forall x,d(x,x) =0,

(2) for all x and y, d(x, y) = d(y, x) (symmetry), and

(3) forall x, y, and z, d(x, 7) < d(x, y) + d(y, z) (triangle inequality).
If also

(4) d(x,y) = 0implies x = y, then d is called a metric.

(X, d) is called a (pseudo)metric space.

A classic example of a metric space is R with the “usual metric” d(x, y) :=
|x —y|. Also, the plane R? with the usual Euclidean distance is a metric space,
in which the triangle inequality says that the length of any side of a triangle
is no more than the sum of the lengths of the other two sides.

Definition. A base for a topology 7 is any collection &/ C 7 such that for
every V€ T,V = J{U € U: U C V}. A neighborhood of a point x is any
set N (open or not) such thatx € U C N for some open U. A collection N of
neighborhoods of x is a neighborhood-base at x iff for every neighborhood
Vofx,x € NCV forsomeN € N.

The usual topology for R has a base consisting of all the open intervals
(a, b) for a < b. A neighborhood-base at any x € R is the set of all inter-
vals (x — 1/n,x + 1/n) forn = 1,2, .... The intervals [—1/3, 1/4] and
(—1/8, 1/7) are both neighborhoods of 0 in R, while [0, 1] is not.

The union of the empty set is empty (by definition), so that | J @ = (J{@} =
@. Thus, for V = @, V is always the union of those U in &/ which it includes,
whether or not @ € U. If U is a base, then X = | JU: every point of X must
be in at least one set in 4.

Note that a set U is open if and only if it is a neighborhood of each of its
points. Given a pseudometric space (X, d),x € X, and r >0, let B(x,r) :=
{y € X:d(x,y) < r}. Then B(x, r) is called the (open) ball with center at x
and radius r.

Specifically, in R, the ball B(x, r) is the open interval (x — r, x + r).
Conversely, any open interval (a, b) for a < b in R can be written as B(x, r)
forx =(@+b)/2,r = (b —a)/2.

2.1.1. Theorem For any pseudometric space (X, d), the collection of all
sets B(x,r), forx € X andr > 0, is a base for a topology on X. For fixed x
it is a neighborhood-base at x for this topology.
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Proof. Suppose xe X,ye X,r >0, and s >0. Let U= B(x,r)N B(y, s).
Suppose z € U. Let ¢t := min(r — d(x,z),s — d(y,z)). Thent > 0. To
show B(z,t) C U, suppose d(z,w) < t. Then the triangle inequality
gives d(x, w) <d(x, z)+1t <r. Likewise, d(y, w) <s. So w € B(x, r) and
w € B(y, s),so B(z,t) C U. Thus for every point z of U, an open ball around
zis included in U, and U is the union of all open balls which it includes.

Let 7 be the collection of all unions of open balls, so U € 7. Suppose
VeTandW eT,s0V =|JAand W = | B where A and B are collec-
tions of open balls. Then

vaw=|JiAnB:Ac A BeB).

Thus VN W € 7. The empty set is in 7 (as an empty union), and X is the
union of all balls. Clearly, any union of sets in 7 is in 7. Thus 7 is a topology.
Also clearly, the balls form a base for it (and they are actually open, so that
the terminology is consistent). Suppose x € U € 7. Then for some y and
r>0,x€ B(y,r)CU.Lets :=r—d(x,y). Thens > 0and B(x,s) C U,
so the set of all balls with center at x is a neighborhood-base at x. O

The topology 7 given by Theorem 2.1.1 is called a (pseudo)metric topo-
logy. If d is a metric, then 7 is said to be metrizable and to be metrized by
d. On R, the topology metrized by the usual metric d(x, y) := |[x — y| is
the usual topology on R; namely, the topology with a base given by all open
intervals (a, b).

If (X, 7) is any topological space and ¥ C X, then {U NY:U € 7T} is
easily seen to be a topology on Y, called the relative topology.

Let f be a function from a set A into a set B. Then for any subset C of
B,let f~1(C) := {x € A: f(x) € C}. This f~'(C) is sometimes called the
inverse image of C under f. (Note that f need not be 1-1,so f~! need not be
a function.) The inverse image preserves all unions and intersections: for any
non-empty collection {B;};; of subsets of B, f~'(U,.; B)) = U £~ (B)
and f‘l(ﬂ,-el B) =(ies £~1(B;). When I is empty, the equation for union
still holds, with both sides empty. If we define the intersection of an empty
collection of subsets of a space X as equal to X (for X = A or B), the equation
for intersections is still true also.

Recall that a sequence is a function whose domain is N, or the set
{n e N:n > 0} of all positive integers. A sequence x is usually written with
subscripts, such as {x,},>0 or {x,},>1, setting x, :=x(n). A sequence is
said to be in some set X iff its range is included in X. Given a topologi-
cal space (X, 7), we say a sequence X, converges to a point x, written x,, — x
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(as n — 00), iff for every neighborhood A of x, there is an m such that x,, € A
foralln > m.

The notion of continuous function on a metric space can be characterized
in terms of converging sequences (if x, — x, then f(x,) — f(x))or with &’s
and §’s. It turns out that continuity (as opposed to, for example, uniform con-
tinuity) really depends only on topology and has the following simple form.

Definition. Given topological spaces (X, 7) and (Y, U), a function f from X
into Y is called continuous iff forall U e U, f~'(U) e T.

Example. Consider the function f with f(x) := x? from R into itself and
let U = (a,b). Thenif b < 0, f~(U) = ¢;ifa < 0 < b, f7I(U) =
(=b'2,b?);0rif 0 < a < b, f7Y(U) = (=b'/?, —a'’?) U (@', b'/?). So
the inverse image of an open interval under f is not always an interval (in
the last case, it is a union of two disjoint intervals) but it is always an open
set, as stated in the definition of continuous function. In the other direction,
fU(—1, 1) :={f(x):—1 < x < 1} =[O0, 1), which is not open.

If n(-) is an increasing function from the positive integers into the positive
integers, so that n(1) < n(2) <---, then for a sequence {x,}, the sequence
k — X, will be called a subsequence of the sequence {x,}. Here n(k) is
often written as 7.

It is straightforward that if x, — x, then any subsequence k — x,) also
converges to x. If 7 is the topology defined by a pseudometric d, then it is
easily seen that for any sequence x,, in X, x,, — x if and only if d(x,, x) —
0 (asn — 00).

Converging along a sequence is not the only way to converge. For example,
one way to say that a function f is continuous at x is to say that f(y) — f(x)
as y — x. This implies that for every sequence such that y, — x, we have
f(n) — f(x),butone can think of y moving continuously toward x, not just
along various sequences. On the other hand, in some topological spaces, which
are not metrizable, sequences are inadequate. It may happen, for example, that
for every x and for every sequence y, — x, we have f(y,) — f(x), but f
is not continuous. There are two main convergence concepts, for “nets” and
“filters,” which do in general topological spaces what sequences do in metric
spaces, as follows.

Definitions. A directed set is a partially ordered set (I, <) such that for any
iand jin I, there isa k in [ with k > i (thatis, i < k) and k > j. A net
{xi}ies 1s any function x whose domain is a directed set, written x; := x(i).
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Let (X, 7)) be a topological space. A net {x;};c; converges to x in X, written
x; — x, iff for every neighborhood A of x, there is a j € I such that x;, € A
forall k > j.

Given a set X, a filter base in X is a non-empty collection F of non-empty
subsets of X such that for any F and G in 7, F NG D H for some H € F.
A filter base F is called a filter iff whenever F € Fand F C G C X
then G € F. Equivalently, a filter F is a non-empty collection of non-empty
subsets of X such that (a) F € Fand F C G C X imply G € F, and (b) if
FeFand G e F,then FNG € F.

Examples. (a) A classic example of a directed set is the set of positive integers
with usual ordering. For it, a net is a sequence, so that sequences are a special
case of nets.

(b) For another example, let I be the set of all finite subsets of N, partially
ordered by inclusion. Then if {x,},cn is a sequence of real numbers and
F € I,let S(F) be the sum of the x,, for n in F. Then {S(F)}rc; is a net. If
it converges, the sum ), x, is said to converge unconditionally. (You may
recall that this is equivalent to absolute convergence, ), |x,| < 00.)

(c) A major example of nets (although much older than the general con-
cept of net) is the Riemann integral. Let a and b be real numbers witha < b
and let f be a function with real values defined on [a, b]. Let I be the set
of all finite sequences a = xo < y; <x1 <y <x-- <y, <x, = b,
where n may be any positive integer. Such a sequence will be written u :=
(xj,yj)j<n-Ifalsov € I, v = (w;, 7;) j<m, the ordering is defined by v < u
iff m < n and for each j < m thereis ani < n with x; = w;. (This relation-
ship is often expressed by saying that the partition {xy, ..., x,} of the inter-
val [a, b] is a refinement of the partition {wo, ..., w,}, keeping the w; and
inserting one or more additional points.) It is easy to check that this order-
ing makes I a directed set. The ordering does not involve the y;. Now let
S(fou) = Zlg/gn f(yj)(x; —x;_1). This is a net. The Riemann integral of
f from a to b is defined as the limit of this net iff it converges to some real
number.

If F is any filter base, then {G C X: F C G for some F € F}isafilter G. F
is said to be a base of G. The filter base F is said to converge to a point x,
written 7 — x, iff every neighborhood of x belongs to the filter. For example,
the set of all neighborhoods of a point x is a filter converging to x. The set of
all open neighborhoods of x is a filter base converging to x. If X is asetand f
afunction withdom f D X, foreach A C X recall that f[A] :=ran(f [ A) =
{f(x): x € A}. For any filter base F in X let f[[F]] := {f[A]l: A € F}.
Note that f[[F]] is also a filter base.
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2.1.2. Theorem Given topological spaces (X, T ) and (Y, U) and a function
f from X into Y, the following are equivalent (assuming AC, as usual):

(1) f is continuous.
(2) For every convergent net x; — x in X, f(x;) > f(x)inY.
(3) For every convergent filter base F — x in X, f[[F]] = f(x)inY.

Proof. (1) implies (2): suppose f(x) € U € U. Then x € f~1(U), so for
some j,x; € f~'(U)foralli > j. Then f(x;) € U, so f(x;) = f(x).

(2) implies (3): let F — x. If f[[F]] # f(x) (thatis, f[[F]] does notcon-
verge to f(x)), take f(x) € U € U with f[A] ¢ U forall A € F. Define a
partial ordering on F by A < B iff A D B for A and B in F. By definition of
filter base, (F, <) is then a directed set. Define a net (using AC) by choosing,
for each A € F, an x(A) € A with f(x(A)) ¢ U. Then the net x(A) — x
but f(x(A)) A~ f(x), contradicting (2).

(3) implies (1): take any U € U and x € f~'(U). The filter F of all neigh-
borhoods of x converges to x, so f[[F]] = f(x).For some neighborhood V
ofx, flVICcU,soV C f~'(U),and f~'(U) e T. O

For another example of a filter base, given a continuous real function f
on [0, 1], let r := sup{f(x):0 < x < 1}. A sequence of intervals I, will be
defined recursively. Let Iy := [0, 1]. Then the supremum of f on at least one
of the two intervals [0, 1/2] or [1/2, 1] equals z. Let I; be such an interval
of length 1/2. Given a closed interval /,, of length 1/2" on which f has the
same supremum ¢ as on all of [0, 1], let [, be a closed interval, either the
left half or right half of I,, with the same supremum. Then {/,},> is a filter
base converging to a point x for which f(x) = ¢.

A topological space (X, 7) is called Hausdorff, or a Hausdorff space, iff
for every two distinct points x and y in X, there are open sets U and V with
x €U,y e V,andUNV = @. Thus a pseudometric space (X, d) is Hausdorff
if and only if d is a metric. For any topological space (S, 7) andset A C S, the
interior of A, orint A, is definedbyint A := | J{U € 7:U C A}.Itis clearly
open and is the largest open set included in A. Also, the closure of A, called
A, is defined by A := (MF C S:F D Aand F is closed}. It is easily seen
that for any sets U; C S, fori inanindex set I, S\ (U;c; Ui) = (i, (S\ U)).
Since any union of open sets is open, it follows that any intersection of closed
sets is closed. So A is closed and is the smallest closed set including A.

Examples. If a < b and A is any of the four intervals (a, b), (a, b], [a, b), or
[a, b], the closure A is [a, b] and the interior is int A = (a, b).
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Closure is related to convergent nets as follows.

2.1.3. Theorem Let (S, T) be any topological space. Then:

(a) For any A C S, A is the set of all x € S such that some net x; — x
with x; € A foralli.

(b) A set F C S is closed if and only if for every net x; — x in S with
Xx; € F foralli we have x € F.

(c) Aset U C S is open iff for every x € U and net x; — x there is some
jwithx; € Uforalli > j.

(d) If T is metrizable, nets can be replaced by sequences x, — x in (a),

(b), and (c).

Proof. (a):Ifx ¢ ‘Aandx; — x,thenx; ¢ Aforsomei.Conversely,ifx € A,
let F be the filter of all neighborhoods of x. Then foreach N € F, NN A # @.
Choose (by AC) x(N) € N N A. Then the net x(N) — x (where the set of
neighborhoods is directed by reverse inclusion, as in the last proof).

(b): Note that F is closed if and only if F = F, and apply (a).

(c): “Only if” follows from the definition of convergence of nets. “If”:
suppose a set B is not open. Then for some x € B, by (b) there is a net
x; — x withx; ¢ B forall i.

(d): In the proof of (a) we can take the filter base of neighborhoods N =
{y:d(x,y) < 1/n} to get a sequence x, — x. The rest follows. O

For any topological space (S, 7), aset A C S is said to be dense in S iff
the closure A = S. Then (S, 7)) is said to be separable iff S has a countable
dense subset.

For example, the set Q of all rational numbers is dense in the line R, so R
is separable (for the usual metric).

(S, 7) is said to satisfy the first axiom of countability, or to be first-
countable, iff there is a countable neighborhood-base at each point. For any
pseudometric space (S, d), the topology is first-countable, since for each
x € §, the balls B(x, 1/n):={y € S:d(x,y) < 1/n},n =1,2,..., form
a neighborhood-base at x. (In fact, there are practically no other examples
of first-countable spaces in analysis.) A topological space (S, 7) is said to
satisfy the second axiom of countability, or to be second-countable, iff T has
a countable base. Clearly any second-countable space is also first-countable.

2.1.4. Proposition A metric space (S, d) is second-countable if and only if
it is separable.
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Proof. Let A be countable and dense in S. Let ¢/ be the set of all balls
B(x,1/n) for x in A and n = 1,2,.... To show that I/ is a base, let U
be any open set and y € U. Then for some m, B(y, 1/m) C U. Take x € A
with d(x, y) < 1/(2m). Then y € B(x,1/(2m)) C B(y,1/m) C U,so U
is the union of the elements of ¢/ that it includes, and { is a base, which is
countable. Conversely, suppose there is a countable base V for the topology,
which we may assume consists of non-empty sets. By the axiom of choice,
let f be a function on N whose range contains at least one point of each set

in V. Then this range is dense. O
Problems

1. On R? let d((x, y), (u, v)) := ((x — u)*> + (y — v)>)'/? (usual metric),

e(x,y) := |x —u| 4+ |y — v|. Show that e is a metric and metrizes the

same topology as d.

2. For any topological space (X, 7) and set A C X, the boundary of A is
defined by A := A\int A. Show that the boundary of A is closed and is
the same as the boundary of X\ A. Show that for any two sets A and B in
X,d(AUB) C dAUJB. Give an example where d(AU B) # 0AUdB.

3. Let (X, d) and (Y, e) be pseudometric spaces with topologies 7; and 7,
metrized by d and e respectively. Let f be a function from X into Y.
Show that the following are equivalent (as stated in the first paragraph of
this chapter):

(@) f is continuous: f~(U) € T, forall U € 7,.
(b) f is sequentially continuous: for every x € X and every sequence
X, — x for d, we have f(x,) — f(x)fore.

4. Let (S, d) be a metric space and X a subset of S. Let the restriction of d
to X x X also be called d. Show that the topology on X metrized by d is
the same as the relative topology of the topology metrized by d on S.

5. Show that any subset of a separable metric space is also separable with its
relative topology. Hint: Use the previous problem and Proposition 2.1.4.

6. Let {x;}ic; be a net in a topological space. Define a filter base F such
that for all x, 7 — x if and only if x; — x.

7. A net {f;};c; of functions on a set X is said to converge pointwise to a
function f iff f;(x) — f(x)forallx in X. The indicator function of a set
Aisdefinedby 14(x) = 1forx € Aand 14(x) =0forx € X\A.If X is
uncountable, show that there is a net of indicator functions of finite sets
converging to the constant function 1, but that the net cannot be replaced
by a sequence.
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(a) Let Q be the set of rational numbers. Show that the Riemann integral
of 1g from O to 1 is undefined (the net in its definition does not
converge). (Q is countable and [0, 1] is uncountable, so the integral
“should be” 0, and will be for the Lebesgue integral, to be defined in
Chapter 3.)

(b) Show that for a sequence 1, of indicator functions of finite sets
F(n) converging pointwise to 1g, the Riemann integral of 1, is 0
for each n.

Let X be aninfinite set. Let 7 consist of the empty set and all complements
of finite subsets of X. Show that 7 is a topology in which every singleton
{x} is closed, but 7 is not metrizable. Hint: A sequence of distinct points
converges to every point.

Let S be any set and S* the set of all sequences {x,},>; with x,, € S for
all n. Let C be a subset of the Cartesian product § x $*°. Also, § x §%
is the set of all sequences {x,},>0 with x, € S foralln = 0,1,....
Such a set C will be viewed as defining a sense of “convergence,” so
that x, —¢ x¢ will be written in place of {x,},>0 € C. Here are some
axioms: C will be called an L-convergence if it satisfies (1) to (3) below.
(1) If x,, = x for all n, then x, —>¢ x.
(2) If x, — ¢ x, then any subsequence x,x) — ¢ X.
3) If x, »>¢c xand x, >¢ y, then x = y.
If C also satisfies (4), it is called an L*-convergence:
(4) If for every subsequence k — x,) there is a further subsequence
J = Yj =Xy With y; —¢ x, then x, —¢ x.

(a) Prove that if T is a Hausdorff topology and C(T') is convergence for
T, then C(T) is an L*-convergence.

(b) Let C be any L-convergence. Let U € T(C) iff whenever x, —¢ x
and x € U, there is an m such that x,, € U for all n > m. Prove that
T(C) is a topology.

(c) Let X be the set of all sequences {x,},>0 of real numbers such that
for some m, x, = 0foralln > m.If y(m) = {y(m),},>0 € X for all
m=0,1,...,say y(m) —¢ y(0)if for some k, y(m); = y(0); =0
for all j > k and all m, and y(m), — y(0), as m — oo for all n.
Prove that — ¢ is an L*-convergence but that there is no metric e such
that y(m) —¢ y(0) is equivalent to e(y(m), y(0)) — O.

For any two real numbers u and v, max(u, v) := u iff u > v; otherwise,
max(u, v) := v. A metric space (S, d) is called an ultrametric space and
d an ultrametric if d(x, z) < max(d(x, y), d(y, z)) for all x, y, and z in
S. Show that in an ultrametric space, any open ball B(x, r) is also closed.
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2.2. Compactness and Product Topologies

In the field of optimization, for example, where one is trying to maximize
or minimize a function (often a function of several variables), it can be good
to know that under some conditions a maximum or minimum does exist.
As shown after Theorem 2.1.2 for [0, 1], for any @ <b in R and continuous
function f from [a, b] into R, there is an x € [a, b] with f(x)= sup{f(u):
a <u <b}. Likewise there isa y € [a, b] with f(y) = inf{f(v):a < v < b}.
This property, that a continuous real-valued function is bounded and attains
its supremum and infimum, extends to compact topological spaces, as will be
defined. (See Problem 18.)

Compactness was defined for metric spaces before general topological
spaces. In metric spaces it has several equivalent characterizations, to be
given in §2.3. Among them, the following, called the “Heine-Borel property,”
is stated in terms of the topology, rather than a metric, so it has been taken
as the definition of “compact” for general topological spaces. Although it
perhaps has less immediate intuitive flavor and appeal than most definitions,
it has proved quite successful mathematically.

Definition. A topological space (K, 7)is called compact iff wheneverid C 7
and K = (JU, there is a finite V C U such that K = [J V.

Let X be a set and A a subset of X. A collection of sets whose union
includes A is called a cover or covering of A. If it consists of open sets, it is
called an open cover. If a subset A is not specified, then A = X is intended.
So the definition of compactness says that “every open cover has a finite
subcover.” The word “every” is crucial, since for any topological space, there
always exist some open coverings with finite subcovers — in other words,
there exist finite open covers, in fact open covers containing just one set, since
the whole set X is always open.

For other examples, the open intervals (—n, n) form an open cover of R
without a finite subcover. The intervals (1/(n + 2), 1/n) forn = 1,2, ...,
form an open cover of (0, 1) without a finite subcover. Thus, R and (0, 1) are
not compact.

A subset K of a topological space X (that is, a set X where (X, 7) is a
topological space) is called compact iff it is compact for its relative topology.
Equivalently, K is compact if for any & C 7 such that K C | JU, there is a
finite V C U such that K C [ J V. We know that if a non-empty set A of real
numbers has an upper bound b—so that x < b for all x € A—then A has
a least upper bound, or supremum c := sup A. That is, ¢ is an upper bound
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of A such that ¢ < b for any other upper bound b of A (as shown in §1.1
and Theorem A.4.1 of Appendix A.4). Likewise, a non-empty set D of real
numbers with a lower bound has a greatest lower bound, or infimum, inf D.
If a set A is unbounded above, let sup A := +o0. If A is unbounded below,
letinf A := —o0.

2.2.1. Theorem Any closed interval [a, b] with its usual (relative) topology
is compact.

Proof. It will be enough to prove this fora = 0 and b = 1. Let U be an open
cover of [0, 1]. Let H be the set of all x in [0, 1] for which [0, x] can be
covered by a union of finitely many sets in ¢/. Then since 0 € V for some
V eU,[0,h] C H forsome h > 0.If H # [0, 1], let y := inf([0, 1]\ H).
Then y € V forsome V € U, soforsomec > 0,[y—c,y]C Vandy—c €
H . Taking a finite open subcover of [0, y — c¢] and adjoining V' gives an open
cover of [0, y], so y € H.If y = 1, we are done. Otherwise, for some b > 0,
[v,y+b] C V,s0[0,y+ b] C H, contradicting the choice of y. O

The next two proofs are rather easy:

2.2.2. Theorem If (K, T)isacompacttopological space and F is a closed
subset of K, then F is compact.

Proof. Let U be an open cover of F, where we may take &/ C 7. Then
UU{K\F}isanopen cover of K, so has a finite subcover V. Then V\{K\ F'}
is a finite cover of F, included in /. O

2.2.3. Theorem If (K,T) is compact and f is continuous from K onto
another topological space L, then L is compact.

Proof. LetU be an open cover of L. Then { f ~!(U): U € U)} is an open cover
of K, with a finite subcover { f ~(U): U € V} where V is finite. Then V is a
finite subcover of L. O

An example or corollary of Theorem 2.2.3 is that if f is a continuous real-
valued function on a compact space K, then f is bounded, since any compact
set in R is bounded (consider the open cover by intervals (—n, n)).

Definition. A filter F in a set X is called an ultrafilter iff forall Y C X, either
Y e For X\Y € F.
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The simplest ultrafilters are of the form {A C X:x € A} for x € X. These
are called point ultrafilters. The existence of non-point ultrafilters depends
on the axiom of choice. Some filters converging to a point x are included in
the point ultrafilter of all sets containing x; but (0, 1/n),n = 1,2, ..., for
example, is a base of a filter converging to 0 in R, where no set in the base
contains 0.

The next two theorems provide an analogue of the fact that every sequence
in a compact metric space has a convergent subsequence.

2.2.4. Theorem Every filter F in a set X is included in some ultrafilter. F
is an ultrafilter if and only if it is maximal for inclusion; that is, if F C G and
G is a filter, then F = G.

Proof. LetY C X.If Fe F,Ge F,FCY,andGNY =@,then FNG =
@, acontradiction. So in particular at most one of Y and X\ Y belongs to F, and
among filters in X, any ultrafilter is maximal for inclusion. Either GNY # @
foralGe For F\Y # @¢foral FeF.IfGNY # @forall G e F,letG:=
{HCX: for some GeF,HDGNY}. Then clearly G is a filter and
FCG. Or, if GNY =@ for some GeF, so F\Y# @ for all FeF,
define G := {H C X:forsome F € F, H D F\Y}. Thus, always 7 C G for
afilter G with either Y € G or X\Y € G. Hence a filter maximal for inclusion
is an ultrafilter.

Next suppose C is an inclusion-chain of filters in X and 4 = | JC. If
FcGcX,FeU,thenforsomeV e C,F e Vand G € V Cc U. If
H e U, H € H for some H € C. Either H C V or V C ‘H. By symmetry,
say V C ‘H.Then F N H € H C U. Thus U is a filter. Hence by Zorn’s
Lemma (1.5.1), any filter F is included in some maximal filter, which is an
ultrafilter. O

In any infinite set, the set of all complements of finite subsets forms a filter
F. By Theorem 2.2.4, F is included in some ultrafilter, which is not a point
ultrafilter. The non-point ultrafilters are exactly those that include F.

Here is a characterization of compactness in terms of ultrafilters, which is
one reason ultrafilters are useful:

2.2.5. Theorem A topological space (S, T) is compact if and only if every
ultrafilter in S converges.

Proof. Let (S, T) be compact and U/ an ultrafilter. If I/ is not convergent, then
forall x take anopenset U (x) withx € U(x) ¢ U. Thenby compactness, there
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isafinite F C Ssuchthat S = | J{U(x): x € F}. Since finite intersections of
sets in i/ are in U, we have ¢ = (| {S\U(x):x € F} € U, a contradiction. So
every ultrafilter converges. Conversely, if V is an open cover without a finite
subcover, let WV be the set of all complements of finite unions of sets in V. It
is easily seen that W is a filter base. It is included in some filter and thus in
some ultrafilter by Theorem 2.2.4. This ultrafilter does not converge. O

Given atopological space (S, 7), asubcollectionld C 7 iscalled a subbase
for 7 iff the collection of all finite intersections of sets in I/ is a base for 7. In
R, for example, a subbase of the usual topology is given by the open half-lines
(—00, b) := {x:x < b}and (a, o0) := {x:x > a}, which do not form a base.
Intersecting one of the latter with one of the former gives (a, b), and such
intervals form a base.

2.2.6. Theorem For any set X and collection U of subsets of X, there is a
smallest topology T including U, andU is a subbase of T . Given a topology T
and U C T,U is a subbase for T iff T is the smallest topology including U.

Proof. Let B be the collection of all finite intersections of members of /. One
member of B is the intersection of no members of I/, which in this case is
(hereby) defined to be X. Let 7 be the collection of all (arbitrary) unions of
members of B. It will be shown that 7 is a topology and B is a base for it.
First, X € B gives X € 7, and @, as the empty union, is also in 7.

Clearly, any union of sets in 7 is in 7. So the problem is to show that the
intersection of any two sets V and W in 7 is also in 7. Now, V is the union
of a collection V and W is the union of a collection WW. Each setin V U W is
a finite intersection of sets in /. The intersection V N W is the union of all
intersections A N B for A € V and B € W. But an intersection of two finite
intersections is a finite intersection, so each such A N B is in B. It follows that
VNW e 7,s07 is a topology. Then, clearly, B is a base for it, and / is a
subbase.

Any topology that includes ¢/ must include 3, and then must include 7,
by definition of topology. So 7 is the smallest topology including /. The
subbase U/ determines the base B and then the topology 7 uniquely, so U is
a subbase for 7 if and only if 7 is the smallest topology including U/. O

2.2.7. Corollary (a) If (S,V) and (X, T) are topological spaces, U is a
subbase of T, and f is a function from S into X, then f is continuous if and
only if f~Y(U) € V foreach U € U.
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(b) If S and I are any sets, and for each i € 1, f; is a function from S into
X;, where (X;, T;) is a topological space, then there is a smallest topology
T on S for which every f; is continuous. Here a subbase of T is given by
{ffl(U): i € 1,U € T1;}, and a base by finite intersections of such sets for
different values of i, where each T; can be replaced by a subbase of itself.

Proof. (a) This essentially follows from the fact that inverse under a function,
B+ f~'(B), preserves the set operations of (arbitrary) unions and intersec-
tions. Specifically, to prove the “if”” part (the converse being obvious), for any

finite set Uy, ..., U, of members of U,
/! ( N U,) =) r'wyev,
1<i<n 1<i<n

so f1(A) € V for each A in a base B of 7. Then for each W € 7, W is the
union of some collection W C B. So

o= (Uw)=Uur ' @rsewreT.

proving (a). Part (b), through the subbase statement, is clear from Theorem
2.2.6. When we take finite intersections of sets ﬁ_l(U[) to get a base, if we
had more than one U; for one value of i—say we had U;; for j =1, ..., k—
then the intersection of the sets fi_l(U,-j) for j = 1,..., k equals fi_l(Ul-),
where U; is the intersection of the U;; for j = 1, ..., k. Or, if the U;; all
belong to a base B; of 7;, then their intersection U; is the union of a collection
U; included in B;. The intersection of the fi_l(U,v) for i in a finite set G is
the union of all the intersections of the fi_] (V;) fori € G, where V; € U; for
eachi € G, so we get a base as stated. ]

Corollary 2.2.7(a) can simplify the proof that a function is continuous. For
example, if f has real values, then, using the subbase for the topology of R
mentioned above, it is enough to show that f~!((a, 00)) and f~!((—o0, b))
are open for any real a, b.

Let (X;, 7;) be topological spaces for all i inaset /. Let X be the Cartesian
product X :=I1;c; X;, in other words, the set of all indexed families {x;};c;,
where x; € X, foralli.Let p; be the projection from X onto the ith coordinate
space X;: pi({x;}jer) := x; forany i € I. Then letting f; = p; in Corollary
2.2.7(b) gives a topology 7 on X, called the product topology, the smallest
topology making all the coordinate projections continuous.

Let R :={x = (x1,..., x): xj € R for all j} be the Cartesian product of
k copies of R, with product topology. The ordered k-tuple (x1, ..., x;) can be
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defined asafunctionfrom {1, 2, ..., k}intoR. Wealsowrite x = {x;}i<j<x =
{xj}’j:]. The product topology on R¥ is metrized by the Euclidean distance
(Problem 16). For any real M > 0, the interval [—M, M] is compact by
Theorem 2.2.1. The cube in RY, [-M, MT* = {{x;}_;:|x;| < M, j =
1, ..., k}iscompactfor the product topology, as a special case of the following
general theorem.

2.2.8. Theorem (Tychonoff’s Theorem) Let (K;,T;) be compact topologi-
cal spaces for eachi in a set 1. Then the Cartesian product I1; K; with product
topology is compact.

Proof. Let U be an ultrafilter in IT; K;. Then for all i, p;[[I/]] is an ultrafilter
in K;, since foreach set A C K, either pl._l(A) or its complement pi_l(K,-\A)
is in Y. So by Theorem 2.2.5, p;[[U]] converges to some x; € K;. For any
neighborhood U of x :={x;};c;, by definition of product topology, there is a
finiteset F C I and U; € 7 fori € F suchthatx € ﬂ{pi_](Ui):i e F}cU.
Foreachi e F, pl._l(Ui) €U, so U el and U — x. So every ultrafilter con-
verges and by Theorem 2.2.5 again, I1; K; is compact. O

One of the main reasons for considering ultrafilters was to get the last
proof; other proofs of Tychonoff’s theorem seem to be longer.

Among compact spaces, those which are Hausdorff spaces have especially
good properties and are the most studied. (A subset of a Hausdorff space
with relative topology is clearly also Hausdorff.) Here is one advantage of the
combined properties:

2.2.9. Proposition Any compact set K in a Hausdorf{f space is closed.

Proof. For any x € K and y ¢ K take open U(x, y) and V(x, y) with x €
Ux,y),y € V(x,y),and U(x, y) N V(x, y) = @. For each fixed y, the set
of all U(x, y) forms an open cover of K with a finite subcover. The intersec-
tion of the corresponding finitely many V (x, y) gives an open neighborhood
W(y) of y, where W(y) is disjoint from K. The union of all such W(y) is the
complement X\ K and is open. O

On any set S, the indiscrete topology is the smallest topology, {®, S}. All
subsets of S are compact, but only @ and § are closed. This is the reverse of
the usual situation in Hausdorff spaces.

If f is a function from X into Y and g a function from Y into Z, let
(go fx):=g(f(x)) for all x € X. Then g o f is a function from X into
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Z, called the composition of g and f. For any set A C Z,(g o f)"'(A) =
£~ g7 (A)). Thus we have:

2.2.10. Theorem If(X,S),(Y,T), and (Z,U) are topological spaces, f is
continuous from X into Y, and g is continuous from Y into Z, then g o f is
continuous from X into Z.

Continuity of a composition of two continuous functions is also clear from
the formulation of continuity in terms of convergent nets (Theorem 2.1.2): if
x; = x,then f(x;) = f(x),s0g(f(x;)) = g(f(x)).

If (X, S) and (Y, T) are topological spaces, a homeomorphism of X onto
Y is a 1-1 function f from X onto Y such that f and f~! are continuous. If
such an f exists, (X, S) and (Y, 7) are called homeomorphic. For example,
a finite, non-empty open interval (a, b) is homeomorphic to (0, 1) by a linear
transformation: let f(x):=a + (b — a)x. A bit more surprisingly, (—1, 1) is
homeomorphic to all of R, letting f(x) := tan(zwx/2).

In general, if f o & is continuous and 4 is continuous, f is not necessarily
continuous. For example, & and so f o & could be constants while f was
an arbitrary function. Or, if 7 is the discrete topology 2% on a set X, & is a
function from X into a topological space Y, and f is a function from Y into
another topological space, then 4 and f o h are always continuous, but f
need not be; in fact, it can be arbitrary. In the following situation, however,
continuity of f will follow, providing another instance of how “compact” and
“Hausdorft”” work well together.

2.2.11. Theorem Leth be a continuous function from a compact topological
space T onto a Hausdorff topological space K. Then a set A C K is open
if and only if h='(A) is open in T. If f is a function from K into another
topological space S, then f is continuous if and only if f o h is continuous.
If his 1-1, it is a homeomorphism.

Proof. Note that K is compact by Theorem 2.2.3. Let 2~'(A) be open.
Then T\h~'(A) is closed and hence compact by Theorem 2.2.2. Thus
h[T\h~'(A)] = K\A is compact by Theorem 2.2.3, hence closed by Propo-
sition 2.2.9, so A is open. If f o h is continuous, then for any open
UcCS,(foh)y \(U) = h~'(f~1(U)) is open. So f~'(U) is open and f
is continuous. The other implications are immediate from the definitions and
Theorem 2.2.10. U

The power set 2% which is the collection of all subsets of a set X, can
be viewed via indicator functions as the set of all functions from X into
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{0, 1}. In other words, 2% is a Cartesian product, indexed by X, of copies of
{0, 1}. With the usual discrete topology on {0, 1}, the product topology on 2¥
is compact.

The following somewhat special fact will not be needed until Chapters 12
and 13. Here f(V):={f(x): x € V} and abar denotes closure. F;, | K means
F, D F,q foralln e Nand (), F, = K.

#2.2.12. Theorem Let X and Y be Hausdorff topological spaces and [ a
continuous function from X into Y. Let F,, be closed sets in X with F,, | K as
n — oo where K is compact. Suppose that either (a) for every open U D K,
there is an n with F,, C U, or (b) F is, and so all the F,, are, compact. Then

FEY = fE)=()FED)

Proof. Clearly,

FKYC [V FED () FED

For the converse, first assume (a). Take any y € (), f(F,)”. Suppose every
x in K has an open neighborhood V, with y ¢ f(V,)™. Then the V, form an
open cover of K, having a finite subcover. The union of the V, in the subcover
gives an open set U D K with y ¢ f(U)~, a contradiction since F,, C U
for n large. So take x € K with y € f(V) for every open V containing x. If
f(x) # y, then take disjoint open neighborhoods W of f(x) and T of y. Let
V = f~1(W) to get a contradiction. So f(x) = yand y € f(K), completing
the chain of inclusions, finishing the (a) part.

Now, showing that (b) implies (a) will finish the proof. The sets F, are
all compact since they are closed subsets of the compact set F;. Let U D K
where U is open. Then F,\U is a decreasing sequence of compact sets with
empty intersection, so for some n, F,\U is empty (otherwise, U and the
complements of the F; would form an open cover of /| without a finite
subcover), so F, C U. O

Problems

1. If §; are sets with discrete topologies, show that the product topology for
finitely many such spaces is also discrete.

2. If there are infinitely many discrete S;, each having more than one point,
show that their product topology is not discrete.
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. Show that the product of countably many separable topological spaces,
with product topology, is separable.

. If (X, 7) and (Y, U) are topological spaces, A is a base for 7 and B is
a base for U/, show that the collection of all sets A x B for A € A and
B € B is a base for the product topology on X x Y.

. (a) Prove that any intersection of topologies on a set is a topology.
(b) Prove that for any collection { of subsets of a set X, there is a smallest
topology on X including U, using part (a) (rather than subbases).

. (a) Let A, bethe set of all integers greater than n. Let 5, be the collection
of all subsets of {1, ..., n}. Let 7, be the collection of sets of positive
integers that are either in BB, or of the form A,, U B for some B € 5,,.
Prove that 7, is a topology.

(b) Show that 7, forn = 1,2, ..., is an inclusion-chain of topologies
whose union is not a topology.
(c) Describe the smallest topology which includes 7, for all n.

. Given a product X = IT;<; X; of topological spaces (X;, 7), with product
topology, and a directed set J, anetin X indexed by J is given by a doubly
indexed family {x;} jes.ic;. Show that such anet converges for the product
topology if and only if for every i € I, the net {x;;};e; converges in X;
for 7;. (For this reason, the product topology is sometimes called the
topology of “pointwise convergence”: for each j, we have a function
i = x;; on I, and convergence for the product topology is equivalent to
convergence at each “point” i € I. This situation comes up especially
when the X; are [copies of] the same space, such as R with its usual
topology. Then IT; X; is the set of all functions from / into R, often
called R7))

. Let I := [0, 1] with usual topology. Let I’ be the set of all functions from

I into I with product topology.

(a) Show that I is separable. Hint: Consider functions that are finite
sums Y a;1,;) where the g; are rational and the J(i) are intervals
with rational endpoints.

(b) Show that I’ has a subset which is not separable with the relative
topology.

(a) For any partially ordered set (X, <), the collection {X} U {{x:x <
vy € XU {{x:x > z}:z € X} is a subbase for a topology on X
called the interval topology. For the usual linear ordering of the real
numbers, show that the interval topology is the usual topology.

(b) Assuming the axiom of choice, there is an uncountable well-ordered
set (X, <). Show that there is such a set containing exactly one
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element x such that y < x for uncountably many values of y. Let
f(x) =1land f(y) = Ofor all other values of y € X. For the interval
topology on X, show that f is not continuous, but for every sequence
u, — uin X, f(u,) converges to f(u).

. Let f be a bounded, real-valued function defined on a set X: for some

M < oo, f[X] C [—M, M]. Let U be an ultrafilter in X. Show that
{f[A]: A € U} is a converging filter base.

What happens in Problem 10 if f is unbounded?

Show that Theorem 2.2.12 can fail without the hypothesis “for every open
U D K, there is an n with F,, C U.” Hint: Let F,, = [n, 00).

Show that Theorem 2.2.12 can fail, for an intersection of just two compact
sets F;, if neither is included in the other.

A topological space (S, 7) is called connected if S is not the union of

two disjoint non-empty open sets.

(a) Prove that if S is connected and f is a continuous function from §
onto T, then T is also connected.

(b) Prove that for any a < b in R, [a, b] is connected. Hint: Suppose
[a, b] = U U V for disjoint, non-empty, relatively open sets U and
V. Suppose ¢ € U andd € V with ¢ < d. Lett:= sup(U N [c, d]).
Thent € U ort € V gives a contradiction.

(¢) If § € R is connected and ¢ < d are in S, show that [c,d] C S.
Hint: Suppose ¢ <t <d and ¢t ¢ S. Consider (—oo,f) N S and
(t,c0)N S.

(d) (Intermediate value theorem) Leta < b in R and let f be continuous
from [a, b] into R. Show that f takes all values between f(a) and
f(b). Hint: Apply parts (a), (b) and (c).

For x and y in R%, the dot product or inner product is defined by x - y :=

(x,y):= Zl;=1 x;y;. The length of x is defined by |x] := (x, x)'/%.

(a) (Cauchy’s inequality). Show that for any x,y € RK (x,y)> <
|x|?|y|?. Hint: the quadratic g(¢) := |x + ty|*> must not have two dis-
tinct real roots.

(b) Show that for any x, y € R¥, |x + y| < |x| + |y|.

(c) Forx,y € Rfletd(x, y):=|x — y|. Show that d is a metric on R¥.
It is called the usual or Euclidean metric.

Let d be as in the previous problem.

(a) Show that d metrizes the product topology on R¥. Hint: Show that any
open ball B(x, r) includes a product of open intervals (x; —u, x; + u)
for some u# > 0, and conversely.

(b) Show that any closed set F in R¥, bounded (for d), meaning that
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sup{d(x, y):x,y € F} < o0, is compact. Hint: It is a subset of a
product of closed intervals.

17. A topological space (S, 7) is called T; iff all singletons {x}, x € S, are

closed. Let S be any set.

(a) Show that the empty set and the collection of all complements of finite
sets form a 7} topology 7 on S in which all subsets are compact.

(b) If S is infinite with the topology in part (a), show that there exists a
sequence of non-empty compactsubsets K| D Ky D --- D K, D ---
such that (,—, K, = @.

(c) Show that the situation in part (b) cannot occur in a Hausdorff space.
Hint: Use Proposition 2.2.9.

18. A real-valued function f on a topological space S is called upper semi-
continuous iff for each a € R, f~'([a, 00)) is closed, or lower semicon-
tinuous iff —fis upper semicontinuous.

(a) Show that f is upper semicontinuous if and only if for all x € S,

f(x) = limsup f(y):=inf{sup{f(y):y € U,y # x}:x € U open},
y—Xx

where sup @ := —o0.

(b) Show that f is continuous if and only if it is both upper and lower
semicontinuous.

(c) If f is upper semicontinuous on a compact space S, show that for
some te€S,f(t)=sup f:=sup{f(x):xe€S}. Hint: Let a, €R,
a, 1 sup f. Consider f~'((—o0,a,)),n=1,2,....

2.3. Complete and Compact Metric Spaces

A sequence {x,} in a space S with a (pseudo)metric d is called a Cauchy
sequence if lim,_, », sup,,.,, d(x,, x,) = 0. The pseudometric space (S, d)
is called complete iff ever_y Cauchy sequence in it converges. A point x in
a topological space is called a limit point of a set E iff every neighborhood
of x contains points of E other than x. Recall that for any sequence {x,} a
subsequence is a sequence k — x,) where k — n(k) is a strictly increasing
function from N\ {0} into itself. (Some authors require only that n(k) — oo as
k — 400.) As an example of a compact metric space, first consider the interval
[0, 1]. Every number x in [0, 1] has a decimal expansion x = 0.d\d»xd; . . .,
meaning, as usual, x = d;/10/. Here each d; = d;(x) is an integer
and 0 < d; < 9 forall j. If a number x has an expansion with d; = 9 for
all j>m and d, <9 for some m, then the numbers d; are not uniquely
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determined, and
0.didrds . ..dy_1d,9999 ... =0.d1drds . ..d,_1(d, + 1)0000....

In all other cases, the digits d; are unique given x.

In practice, we work with only the first few digits of decimal expan-
sions. For example, we use m = 3.14 or 3.1416 and very rarely need to know
that w =3.14159265358979 . . .. This illustrates a very important property
of numbers in [0, 1]: given any prescribed accuracy (specifically, given any
& > 0), there is a finite set ' of numbers in [0, 1] such that every number x in
[0, 1] can be represented by a number y in F' to the desired accuracy, that is,
|x — y| < &. In fact, there is some n such that 1/10” < ¢ and then we can let
F be the set of all finite decimal expansions with n digits. There are exactly
10" of these. For any x in [0, 1] we have |[x —0.x;x, ... x,| < 1/10" < ¢ and
0.x1xy...x, € F.

The above property extends to metric spaces as follows.

Definition. A metric space (S, d) is called totally bounded iff for every ¢ > 0
there is a finite set F C S such that for every x € S, there is some y € F

with d(x, y) < e.

Another convenient property of the decimal expansions of real numbers

in [0, 1] is that for any sequence xi, x2, X3, . .. of integers from O to 9, there
is some real number x € [0, 1] such that x = 0.x;x>x3 . ... In other words,
the special Cauchy sequence 0.x1, 0.x1x3, 0.x1x2x3, .. O X1X2X3 ... Xp,s - -

actually converges to some limit x. This property of [0 1] is an example of
completeness of a metric space (of course, not all Cauchy sequences in [0, 1]
are of the special type just indicated).

Now, here are some useful general characterizations of compact metric
spaces.

2.3.1. Theorem For any metric space (S, d), the following properties are
equivalent (any one implies the other three):

(I) (S, d) is compact: every open cover has a finite subcover.
(II) (S, d) is both complete and totally bounded.
(III) Every infinite subset of S has a limit point.
(IV) Every sequence of points of S has a convergent subsequence.

Proof. (I) implies (I): let (S, d) be compact. Given r >0 and x € S, re-
call that B(x,r):={y € S:d(x, y) <r}. Then for each r, the set of all such
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neighborhoods, {B(x,r):x € S}, is an open cover and must have a finite
subcover. Thus (S, d) is totally bounded. Now let {x,} be any Cauchy se-
quence in S. Then for every positive integer m, there is some n(m) such that
d(xy, Xum)) < 1/m whenever n > n(m). Let U,, = {x:d(x, X)) > 1/m}.
Then U, is an open set. (If y € Uy, and r :=d(xpmy, y) — 1/m, thenr > 0
and B(y,r) C U,.) Now x,, ¢ U, for n > n(m) by definition of n(m). Thus
xe ¢ U{Un:1 < m < s}if k > max{n(m):m < s}. Since the U,, do not
have a finite subcover, they cannot form an open cover of S. So there is some
x with x ¢ U, for all m. Thus d(x, x,m)) < 1/m for all m. Then by the
triangle inequality, d(x, x,) < 2/m for n > n(m). So lim,,_, od(x, x,) = 0,
and the sequence {x,} converges to x. Thus (S, d) is complete as well as
totally bounded, and (I) does imply (II).

Next, assume (II) and let’s prove (III). For eachn = 1,2, ..., let F,, be a
finite subset of S such that for every x € S, we have d(x, y) < 1/n for some
y € F,. Let A be any infinite subset of S. (If S is finite, then by the usual
logic we say that (II) does hold.) Since the finitely many neighborhoods
B(y, 1) for y € F; cover S, there must be some x; € F} such that A N
B(x1, 1) is infinite. Inductively, we choose x, € F,, for all n such that A N
O {B(xm, 1/m):m = 1,...,n} is infinite for all positive integers n. This
implies that d(x,,, x,) < 1/m+1/n < 2/m whenm < n (there is some y €
B(x,, 1/m)NB(x,, 1/n),and d(x,,, x,) < d(x,,, y)+d(xy, y)). Thus {x,} is
a Cauchy sequence. Since (S, d) is complete, this sequence converges to some
x € S, and d(x,, x) < 2/n for all n. Thus B(x, 3/n) includes B(x,, 1/n),
which includes an infinite subset of A. Since 3/n — 0Oasn — 0o, x is a
limit point of A. So (II) does imply (III).

Now assume (III). If {x,} is a sequence with infinite range, let x be a
limit point of the range. Then there are n(1) < n(2) < n(3) < - - - such that
d(xpy, x) < 1/k for all k, so x,q) converges to x as k — oo. If {x,} has
finite range, then there is some x such that x, = x for infinitely many values
of n. Thus there is a subsequence x,,) with x,4) = x for all k, so x,x) — x.
Thus (IIT) implies (IV).

Last, let’s prove that (IV) implies (I). Let I/ be an open cover of S. For any
x €S, let

f(x):=sup{r: B(x,r)C U for some U € U}.

Then f(x) > O for every x € S. A stronger fact will help:

2.3.2. Lemma Inf{f(x):x € S} > 0.

Proof. If not, there is a sequence {x,} in S such that f(x,) < 1/n forn=
1,2,.... Let x,) be a subsequence converging to some x € S. Then for
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some U € U and r > 0, B(x,r) C U. Then for k large enough so that
d(xuy, x) < r/2, we have f(x,x)) > r/2, a contradiction for large k. O

Now continuing the proof that (IV) implies (I), let ¢ := min(2, inf{ f (x):
x € §}) > 0. Choose any x; € S. Recursively, given xy, ..., x,, choose x4
if possible so that d(x,+1,x;) > ¢/2forall j = 1, ..., n. If this were pos-
sible for all n, we would get a sequence {x,} with d(x,,, x,) > ¢/2 whenever
m # n. Such a sequence has no Cauchy subsequence and hence no convergent
subsequence. So there is a finite n such that S = (J._, B(x;, ¢/2). By the

j=<n
definitions of f and c, for each j = 1,...,n there is a U; € U such that
B(xj,c/2) C U;.Then the union of these U; is S, and I/ has a finite subcover,
finishing the proof of Theorem 2.3.1. O

For any metric space (S,d) and A C S, the diameter of A is defined as
diam(A) := sup{d(x, y):x € A,y € A}. Then A is called bounded iff its
diameter is finite.

Example. Let S be any infinite set. For x #y in S, let d(x, y)=1, and
d(x,x)=0. Then S is complete and bounded, but not totally bounded. The
characterization of compact sets in Euclidean spaces as closed bounded sets
thus does not extend to general complete metric spaces.

Totally bounded metric spaces can be compared as to how totally bounded
they are in terms of the following quantities. Let (S, d) be a totally bounded
metric space. Given ¢ >0, let N(eg, S) be the smallest n such that §=
U <<, Ai forsome sets A; with diam(A;) < 2efori =1, ...,n.Let D(¢, S)
be the largest number m of points x;,i =1, ..., m, such that d(x;, x;) > ¢
whenever i # j.

Problems

1. Show that for any metric space (S,d) and ¢ > 0, N(e, S) < D(¢, S) <
N(g/2,9).

2. Let (S, d)be the unitinterval [0, 1] with the usual metric. Evaluate N (g, §)
and D(e, S) for all ¢ > 0. Hint: Use the “ceiling function” [x] := least
integer > x.

3. If S is the unit square [0, 1] x [0, 1] with the usual metric on R?, show
that for some constant K, N(g, §) < K/s2 forO0 <e < 1.

4. Give an open cover of the open unit square (0, 1) x (0, 1) which does not
have a finite subcover.
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5. Prove that any open cover of a separable metric space has a countable
subcover Hint: Use Proposition 2.1.4.

6. Prove that a metric space (S, d) is compact if and only if every countable
filter base is included in a convergent one.

7. For the covering of [0, 1] by intervals (j/n,(j + 2)/n), j=—1,0,
1,...,n — 1, evaluate the infimum in Lemma 2.3.2.

8. Let (S, d) be a noncompact metric space, so that there is an infinite
set A without a limit point. Show that the relative topology on A is dis-
crete.

9. Show that a set with discrete relative topology may have a limit point.

10. A point x in a topological space is called isolated iff {x} is open. A
compact topological space is called perfect iff it has no isolated points.
Show that:

(a) Any compact metric space is a union of a countable set and a per-
fect set. Hint: Consider the set of points having a countable open
neighborhood. Use Problem 5.

(b) If (K, d) is perfect, then every non-empty open subset of K is un-
countable.

11. Let {x;,i € I} be a net where [ is a directed set. For J C I, {x;,i € J}
will be called a strict subnet of {x;,i € I} if J is cofinal in I, that is, for
alli € 1,i < j forsome j € J.

(a) Show that this implies J is a directed set with the ordering of /.

(b) Show that in [0, 1] with its usual topology there exists a net having
no convergent strict subnet (in contrast to Theorems 2.2.5 and 2.3.1).
Hint: Let W be a well-ordering of [0, 1]. Let I be the setof all y €
[0, 1] such that {z: t Wy} is countable. Show that I is uncountable and
well-ordered by W. Let x, :=y for all y € I. Show that {x,:y € I}
has no convergent strict subnet.

Compactness can be characterized in terms of convergent subnets
(e.g. Kelley, 1955, Theorem 5.2), but only for nonstrict subnets; see
also Kelley (1955, p. 70 and Problem 2.E).

2.4. Some Metrics for Function Spaces

First, here are three rather simple facts:

2.4.1. Proposition For any metric space (S, d), if {x,} is a Cauchy se-
quence, then it is bounded (that is, its range is bounded). If it has a convergent



2.4. Some Metrics for Function Spaces 49

subsequence x,, — X, then x, — x. Any closed subset of a complete metric
space is complete.

Proof. If d(x,,,x,)<1 for m>n, then for all m,d(x,,x,) <1+
max{d(x;, x,): ] <n} < oo, so the sequence is bounded.

If x,) — x,then givene > 0, take m such thatifn > m, thend(x,, x,,) <
¢/3, and take k such that n(k) > m and d(x,x), x) < &/3. Then d(x,, x) <
d(xp, Xp) + d(Xp, Xngy + dXpiy, X) < €/3+¢/34+¢/3 =¢,50x, = x.
From Theorem 2.1.3(b) and (d), a closed subset of a complete space is
complete. O

A closed subset F of a noncomplete metric space X, for example F = X,
is of course not necessarily complete. Here is a classic case of completeness:

2.4.2. Proposition R with its usual metric is complete.

Proof. Let {x,} be a Cauchy sequence. By Proposition 2.4.1, it is bounded
and thus included in some finite interval [—M, M]. This interval is compact
(Theorem 2.2.1). Thus {x,} has a convergent subsequence (Theorem 2.3.1),
so {x,} converges by Proposition 2.4.1. O

Let (S,d) and (T, e) be any two metric spaces. It is easy to see that a
function f from S into T is continuous if and only if forall x € Sand ¢ > 0
there is a § > 0 such that whenever d(x, y) < §, we have e(f(x), f(y)) < e.
If this holds for a fixed x, we say f is continuous at x. If for every ¢ > 0 there
isad > Osuch that d(x, y) < § implies e(f(x), f(y)) < ¢ forall x and y in
S, then f is said to be uniformly continuous from (S, d) to (T, e).

For example, the function f(x) = x? from R into itself is continuous but
not uniformly continuous (for a given ¢, as | x| gets larger, § must get smaller).

Before taking countable Cartesian products it is useful to make metrics
bounded, which can be done as follows. Here [0, 00) :={x € R:x > 0}.

2.4.3. Proposition Let f be any continuous function from [0, 00) into itself
such that

(1) f is nondecreasing: f(x) < f(y) whenever x <y,

(2) f is subadditive: f(x +y) < f(x)+ f(y)forallx > 0andy > 0,
and

(3) f(x) =0ifand only if x = 0.
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Then for any metric space (S, d), f od is a metric, and the identity function
g(s) = s from S to itself is uniformly continuous from (S, d) to (S, f od) and
from (S, fod)to(S,d).

Proof. Clearly 0 < f(d(x,y)) = f(d(y,x)), which is 0 if and only if
d(x,y) = 0, for all x and y in S. For the triangle inequality, f(d(x, 7)) <
fdx,y)+d(y,2) < fd(x,y)+ f(d(y,z)),so0 f od is a metric. Since
f(@) > O0forallt > 0, and f is continuous and nondecreasing, we have for
every e >0ad>0suchthat f(f)<eifr<d,and t <eif f(t) < Xr:= f(e).
Thus we have uniform continuity in both directions. O

Suppose f” (x) < 0forx > 0. Then f’ is decreasing, so for any x, y > 0,

y y
F4y)— f() = /0 Flx+0d < /O FOydt = () — ().

Thus if f(0) = 0, f is subadditive. There are bounded functions f satisfying
the conditions of Proposition 2.4.3; for example, f(x):=x/(1+x)or f(x):=
arc tan x.

2.4.4. Proposition For any sequence (S,,d,) of metric spaces, n=1,
2,..., the product S:=1T1,S, with product topology is metrizable, by

the metric d({x,}, {yn}):= ), f(dp(xn, y))/2", where f(t):=1/(1 + 1),
t > 0.

Proof. First, f(x) = 1 — 1/(1 + x), so f is nondecreasing and f"(x) =
—2/(14x)*. Thus f satisfies all three conditions of Proposition 2.4.3, so
fod, is a metric on §, for each n. To show that d is a metric, first let
ey(x,y):= f(d,(x,, ¥,))/2". Then e, is a pseudometric on S for each n.
Since f < 1,d(x,y) =), e,(x,y) < 1 forall x and y. Clearly, d is non-
negative and symmetric. For any x, y, and z in S,d(x,z) = ), e,(x,2) <
Y ,en(x, y)+en(y, z) =d(x,y) +d(y, z) (on rearranging sums of nonneg-
ative terms, see Appendix D). Thus d is a pseudometric. If x ## y, then for
somen, X, # Vn,80d, (X, yu) > 0, f(d,(x,, y)) > 0,andd(x, y) > 0.Sod
is a metric. For any x = {x,} € S, the product topology has a neighborhood-
base at x consisting of all sets N(x, 8, m):={y:d;(x;,y;) < forall j =
l,...,m},for§ > 0andm = 1,2,.... Given ¢ > 0, for n large enough,
27" < g/2. Then since (lejfn 27/)e/2 < /2, noting that f(x) < x for all
x,and Zj>n 27/ < g/2,wehave N(x,&/2,n) C B(x,e):={y:d(x,y) < €}
for each n.
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Conversely, suppose given 0 < § < 1 and n. Since f(1)=1/2, f(x)<1/2
implies x < 1. Then x = (1 +x) f(x) <2 f(x). Let y :=27""18. If d(x, y) <
y.thenforj=1,...,n, f(dj(x;, y;) <2/y <1/2,s0d;(x;, y;) <2/ 1y <
8. So we have B(x, y) C N(x, 8, n). Thus neighborhoods of x for d are the
same as for the product topology, so d metrizes the topology. O

A product of uncountably many metric spaces (each with more than one
point) is not metrizable. Consider, for example, a product of copies of {0, 1}
over an uncountable index set /; in other words, the set of all indicators of
subsets of /. Let the finite subsets F of I be directed by inclusion. Then
the net 1, for all finite F, converges to 1 for the product topology, but no
sequence 1p(, of indicator functions of finite sets can converge to 1, since
the union of the F(n), being countable, is not all of /.

So, to get metrizable spaces of real functions on possibly uncountable
sets, one needs to restrict the space of functions and/or consider a topology
other than the product topology. Here is one space of functions: for any com-
pact topological space K let C(K) be the space of all continuous real-valued
functions on K. For f € C(K), we have sup | f|:= sup{|f(x)|:x € K} <0
since f[K] is compact in R, by Theorem 2.2.3. It is easily seen that
dsp(f, g):= sup| f — gl is a metric on C(K).

A collection F of continuous functions from a topological space S into
X, where (X, d) is a metric space, is called equicontinuous at x € S iff for
every € > 0 there is a neighborhood U of x such that d(f(x), f(¥)) < ¢
forall y € U and all f € F. (Here U does not depend on f.) F is called
equicontinuous iff it is equicontinuous at every x € S. If (S, e) is a metric
space, and for every ¢ > 0 there is a § > 0 such that e(x, y) < § implies
d(f(x), f(y)) < e for all x and y in S and all f in F, then F is called
uniformly equicontinuous. In terms of these notions, here is an extension of
a better-known fact (Corollary 2.4.6 below):

2.4.5. Theorem 1If (K,d) is a compact metric space and (Y, e) a metric
space, then any equicontinuous family of functions from K into Y is uniformly
equicontinuous.

Proof. If not, there exist ¢ > 0,x, € K,u, € K, and f, € F such that
d(uy,, x,) < 1/nande( f,(u,), f,(x,)) > eforall n. Then since any sequence
in K has a convergent subsequence (Theorem 2.3.1), we may assume x, — x
for some x € K, so u, — x. By equicontinuity at x, for n large enough,

e(fu(un), fr(x)) < e/2ande(fu(xn), fu(x)) < €/2,50e(fu(un), fu(xn)) < &,

a contradiction. O
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2.4.6. Corollary A continuous function from a compact metric space to any
metric space is uniformly continuous.

A collection F of functions on a set X into R is called uniformly bounded
iff sup{| f(x)|: f € F, x € X} < oo. On any collection of bounded real func-
tions, just as on C(K) for K compact, let dy,(f, g) := sup | f — gl|. Then dgyp
is a metric.

The sequence of functions f,(¢):=t" on [0, 1] consists of continuous
functions, and the sequence is uniformly bounded: sup, sup, | f,(¢)| = 1.
Then { f,} is not equicontinuous at 1, so not totally bounded for dy,;, by the
following classic characterization:

2.4.7. Theorem (Arzela-Ascoli) Let (K, e) be a compact metric space and
F C C(K). Then F is totally bounded for dy, if and only if it is uniformly
bounded and equicontinuous, thus uniformly equicontinuous.

Proof. If F is totally bounded and ¢ > 0, take f, ..., f, € F suchthatforall
f e F,sup|lf — fj| < ¢/3 for some j. Each f; is uniformly continuous (by
Corollary 2.4.6). Thus the finite set { f1, . .., f,} is uniformly equicontinuous.
Take § > 0 such that e(x, y) < implies |f;(x) — fj(y)l <¢&/3 for all j=
1,...,nand x,y € K. Then |f(x) — f(y)| < e forall f € F, so F
is uniformly equicontinuous. In any metric space, a totally bounded set is
bounded, which for dy,, means uniformly bounded.

Conversely, let F be uniformly bounded and equicontinuous, hence
uniformly equicontinuous by Theorem 2.4.5. Let | f(x)| <M < oo for all
feF and x e K. Then [—M, M] is compact by Theorem 2.2.1. Let G
be the closure of F in the product topology of RX. Then G is com-
pact by Tychonoff’s theorem 2.2.8 and Theorem 2.2.2. For any ¢ > 0 and
x,yeK,{feRE:|f(x)— f(y) <&} is closed. So if e(x,y) <8 implies
|f(x)— f(y)|<eforall f € F, the same remains true for all f € G. Thus
G is also uniformly equicontinuous.

LetU be any ultrafilter in G. Then &/ converges (for the product topology) to
some g € G, by Theorem 2.2.5. Given ¢ > 0, take § > 0 such that whenever
e(x,y)<d,|f(x)— f(y)|<e/d<e/3forall f € G. Take a finite set S C K
such that for any y € K, e(x, y) < é for some x € S. Let

U:={f:1f(x)—gx)| <e/3forallx € S}.

Then U is open in R, so U e U.If f € U, then | f(y) — g(y)| < € for all
y € K, sodgy(f, g) < e&. ThusUf — g for dgp. So G is compact for dg,, (by
Theorem 2.2.5), hence F is totally bounded (by Theorem 2.3.1). d
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For any topological space (S, 7) let C,(S):=Cy(S,7) be the set of all
bounded, real-valued, continuous functions on S. The metric dy,, is defined on
Cp(S). Any sequence f, that converges for dy,, is said to converge uniformly.
Uniform convergence preserves boundedness (rather easily) and continuity:

2.4.8. Theorem For any topological space (S,T), if f, €Cy(S,7T) and
fn— [ uniformly as n — oo, then f € Cp(S,T).

Proof. For any ¢ > 0, take n such that dg,p(f,,, f) < /3. Forany x € §, take
a neighborhood U of x such that forall y € U, | f,,(x) — f,(y)| < &/3. Then

|f () — fOD < 1f ) = o+ 1 fu(x) = LoD+ () — f(D)]
<e/34+¢/34+¢/3=c¢.

Thus f is continuous. It is bounded, since du(0, f) < dsp(0, f) +
deup(fr, f) < 00. O

2.4.9. Theorem For any topological space (S,T), the metric space
(Cp(S, T), dp) is complete.

Proof. Let {f,} be a Cauchy sequence. Then for each x in S, {f,(x)} is
a Cauchy sequence in R, so it converges to some real number, call it
f(x). Then for each m and x, | f(x) — fru(X)| = lim,,_ o | fn(x) — fin(x)] <
lim sup, _, o doup(fns f) = 0 as m— 00, s0 dsyp(fin, f)— 0. Now f e
Cy(S, T) by Theorem 2.4.8. O

We write ¢, | ¢ for real numbers ¢, iff ¢, > ¢,41 forall n and ¢, — ¢
as n — oo. If f, are real-valued functions on a set X, then f,, | f means
fn(x) | f(x)forall x € X. We then have:

2.4.10. Dini’s Theorem If (K, 7T) is a compact topological space, f, are
continuous real-valued functions on K foralln €N, and f, | fo, then f, —
fo uniformly on K.

Proof. Foreachn, f,— fo > 0.Givene > 0,letU, :={x € K: (f,— fo)(x) <
¢}. Then the U, are open and their union is all of K. So they have a finite sub-
cover. Since the convergence is monotone, we have inclusions U,, C U4+ C
-+« . Thus some U, is all of K. Then for all m > n, (f,, — fo)(x) < ¢ for all
x € K. O
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Examples. The functions x" | 0 on [0, 1) but not uniformly; [0, 1) is not
compact. On [0, 1], which is compact, x" | 11}, not uniformly; here the limit
function f; is not continuous. This shows why some of the hypotheses in
Dini’s theorem are needed.

A collection F of real-valued functions on a set X forms a vector space
iff for any f, g € F and ¢ € R we have cf + g € F, where (cf + g)(x) :=
cf(x)+ g(x) for all x. If, in addition, fg € F where (fg)(x) := f(x)g(x) for
all x, then F is called an algebra. Next, F is said to separate points of X if
for all x # y in X, we have f(x) # f(y) for some f € F.

2.4.11. Stone-Weierstrass Theorem (M. H. Stone) Let K be any compact
Hausdorff space and let F be an algebra included in C(K) such that F
separates points and contains the constants. Then F is dense in C(K) for

dsup.
Theorem 2.4.11 has the following consequence:

2.4.12. Corollary (Weierstrass) On any compact set K CR?, d < oo, the
set of all polynomials in d variables in dense in C(K) for dgyp.

Proof of Theorem 2.4.11. A special case of the Weierstrass theorem will be
useful. Define () :=x(x—1) - - - (x—k+1)/k!foranyx e Randk = 1,2, ...,
with (§) := 1. The Taylor series of the function 7 — (1 —¢)!/? around r = 0
is the “binomial series”

1-nr=3" (1/ 2)(—:)”.
n

n=0
For any r < 1, the series converges absolutely and uniformly to the function
for |t| < r (Appendix B, Example (c)). Thus for any ¢ > 0 the function

A+e—0"2 =0+ —1t/[1 +&]'/?
has a Taylor series converging to it uniformly on [0, 1]. Letting ¢ | 0 we have

sup [(1+e—D"? -1 -] -0,

0<r<l1
so (1 — t)!/? can be approximated uniformly by polynomials on 0 < ¢ < 1.
Letting t = 1 — s, we get that the function A(s):=|s| can be approxi-
mated uniformly by polynomials on —1 <s < 1.Let (Ao f)(x):=|f(x)|if
|f(x)| < 1 forall x. If P is any polynomial and f € F then Po f € F
where (P o f)(x):= P(f(x)) for all x.
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Let F be the closure of F for dsup- The closure equals the completion, by
Proposition 2.4.1 and Theorem 2.4.9, and is also included in C(K). Itis easy to
check that  is also an algebra. Forany f € F and M > dsup(0, f) =sup | f|
we have | f| = MA o (f/M),so | f| € F. Thus for any f, g € F we have

max(f,g) = 1(f +8) +3lf —gl € F,
min(f, g) = 5(f +8) = 31f — gl € F.
Iterating, the maximum or minimum of finitely many functions in F is in F.

For any x # y in X take f € F with f(x) # f(y). Then for any real
¢, d there exista, b € R with (af + b)(x) = c and (af + b)(y) = d, namely
a:=(c—ad)/(f(x)— f(),b:=c—af(x).Notethataf + b € F. Now take
any h € C(K)andfixx € K.Forany y € K take h, € F with h,(x) = h(x)
and h,(y) = h(y). Given ¢ > 0, there is an open neighborhood U, of y such
that h,(v) > h(v) — ¢ for all v € U,. The sets U, form an open cover of
K and have a finite subcover Uy;), j =1, ..., n. Let g, := maxi<<, h,(j).
Then g, € F, g«(x) = h(x), and g,(v) > h(v) — e forallv € K.

For each x € K, there is an open neighborhood V, of x such that g,(u) <

h(u)+ ¢ for all u € V. The sets V, have a finite subcover Vy, ..., Vyon of
K. Let g :=minj<;<, g«j)- Then g € F and dsup(g, h) < €. Lettinge | 0
gives h € F, finishing the proof. O

Complex numbers z = x + iy are treated in Appendix B. The absolute
value |z| = /x?+ y? is defined, so we have a metric dy,, for bounded
complex-valued functions. Here is a form of the Stone-Weierstrass theorem
in the complex-valued case.

2.4.13. Corollary Let (K, T) be a compact Hausdorff space. Let A be an
algebra of continuous functions: K — C, separating the points and con-
taining the constants. Suppose also that A is self-adjoint, in other words
f =g—ih € Awhenever f = g +ih € Awhere g and h are real-valued
Sfunctions. Then A is dense in the space of all continuous complex-valued
functions on K for dgp.

Proof. For any f =g +ihe€ A with g:= Ref and i := Imf real-valued,
we have g = (f + f)/2 € Aand h = (f — f)/(2i) € A. Let C be the
set of real-valued functions in .A. Then C is an algebra over R. We also have
C ={Ref: feA}and C={Im f: f € A}. Thus C separates the points of
K. It contains the real constants. Thus C is dense in the space of real-valued
continuous functions on K by Theorem 2.4.11. Taking g+ih forany g, h € C,
the result follows. O
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Example. The hypothesis that A is self-adjoint cannot be omitted. Let T'! :=
{z € C:|z| = 1}, the unit circle, which is compact. Let A be the set of all
polynomials 7+ Z};:o a;jz’,a;€C,n=0,1,.... Then A is an algebra
satisfying all conditions of Corollary 2.4.13 except self-adjointness. The func-
tion f(z) :=Z = 1/zon T cannot be uniformly approximated by a polynomial
P, € A, as follows. For any such P,,

1 2 ) )
— / |f(e") — Pu(e'))?db > 1
27'[ 0

because the “cross terms” 02” e~ kD0 go — Ofork = 0, 1, ..., and likewise
if —i is replaced by i.

Problems

For any M > 0, @ > 0, and metric space (S, d), let Lip(a, M) be the set of
all real-valued functions f on S such that | f(x) — f(y)| < Md(x, y)* for
all x, y € S. (For @ = 1, such functions are called Lipschitz functions. For
0 < a < 1 they are said to satisfy a Holder condition of order «.)

1. If (K, d) is a compact metric space and u € K, show that for any finite
Mand 0 < o < 1,{f € Lip(a, M): | f(u)| < M} is compact for dyyp.

2. If S =[O0, 1] with its usual metric and o > 1, show that Lip(«, 1) contains
only constant functions. Hint: For 0 < x < x+h < 1, f(x+h) —
fx) = Z]gjgn f&x+jh/n)— f(x+(j—1)h/n). Give an upper bound
for the absolute value of the jth term of the right, sum over j, and let
n— oo.

3. Find continuous functions f, from [0, 1] into itself where f, — 0
pointwise but not uniformly as n — oo. Hint: Let f,(1/n)=1, f,(0)=
f2(2/n) = 0. (This shows why monotone convergence, f,, | fo,isuseful
in Dini’s theorem.)

4. Show that the functions f,(x):=x" on [0, 1] are not equicontinuous at
1, without applying any theorem from this section.

5. If (8;, d;) are metric spaces for i € I, where [ is a finite set, then on the
Cartesian product § = IT;¢;S; letd(x, y) = >, di(x;, yi).
(a) Show that d is a metric.
(b) Show that d metrizes the product of the d; topologies.
(c) Show that (S, d) is complete if and only if all the (S;,d;) are
complete.
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Prove that each of the following functions f has properties (1), (2),
and (3) in Proposition 2.4.3: (a) f(x):=x/(1 + x); (b) f(x):= tan~! x;
(¢) f(x):= min(x, 1),0 < x < oo.

Show that the functions x + sin(nx) on [0, 1] forn = 1,2, ..., are not
equicontinuous at 0.

. A function f from a topological space (S, 7") into a metric space (Y, d)

is called bounded iff its range is bounded. Let C,(S, Y, d) be the set of all
bounded, continuous functions from S into Y. For f and g in Cy(S, Y, d)
let dgyp(f, ) := sup{d(f(x), g(x)):x € S}. If (¥, d) is complete, show
that C(S, Y, d) is complete for dyp.

(Peano curves). Show that there is a continuous function f from the unit
interval [0, 1] onto the unit square [0, 1] x [0, 1]. Hints: Let f be the limit
of a sequence of functions f;, which will be piecewise linear. Let fi(z) =
0, 1). Let fo(t) = (2t,0) for 0 <t < 1/4, fo(t) = (1/2,2t — 1/2) for
1/4 <t <3/4,and f>r(t) = 2—2¢, 1)for3/4 <t < 1. Atthe nth stage,
the unit square is divided into 2" - 2" = 4" equal squares, where the graph
of f, runs along at least one edge of each of the small squares. Then at
the next stage, on the interval where f, ran along one such edge, f,+i
will first go halfway along a perpendicular edge, then along a bisector
parallel to the original edge, then back to the final vertex, just as f, related
to f1. Show that this scheme can be carried through, with f,, converging
uniformly to f.

Show that fork = 2, 3, ..., there is a continuous function f ® from [0, 1]
onto the unit cube [0, 11¥ in R¥. Hint: Let fP(t) :=(g(t), h(t)) := f(¢)
for 0 < t < 1 from Problem 9. For any (x, y, z) € [0, 1]%, there are
t and u in [0, 1] with f(u) = (v,2) and f(t) = (x,u), so fO@):=
(g(®), g(h(t)), h(h(t))) = (x, y, z). Iterate this construction.

Show that there is a continuous function from [0, 1] onto I1,,5[0, 1],, a
countable product of copies of [0, 1], with product topology. Hint: Take
the sequence f* as in Problem 10. Let Fi(1), := f®(t), forn < k, 0
for n > k. Show that Fj converge to the desired function as k — oco.

Let K be a compact Hausdorff space and suppose for some k there
are k continuous functions fi, ..., f from K into R such that x +—
(fi(x), ..., fi(x)) is one-to-one from K into R¥. Let F be the smallest
algebra of functions containing fi, f2, ..., fx and 1. (a) Show that F
is dense in C(K) for dyyp. (b) Let K := S':={(cos@,sin6):0<0 <27}
be the unit circle in R? with relative topology. Part (a) applies easily for
k = 2. Show that it does not apply for k = 1: there is no 1-1 continuous



58 General Topology

function f from S' into R. Hint: Apply the intermediate value theorem,
Problem 14(d) of Section 2.2. For 6 consider the intervals [0, 7] and
[, 27].

13. Give a direct proof of the “if” part of the Arzela-Ascoli theorem 2.4.7,
without using the Tychonoff theorem or filters. Hints: Apply Theorem
2.4.5. Given ¢ > 0, take § > O for ¢/4 and F. Theorem 2.3.1 gives a
finite 5-dense setin K, and [— M, M] has a finite £ /4-dense set. Use these
to get a finite e-dense set in F for dyyp.

2.5. Completion and Completeness of Metric Spaces

Let (S,d) and (T, e) be two metric spaces. A function f from § into T is
called an isometry iff e( f(x), f(y)) = d(x, y)forall x and y in S.

For example if S = T = R?, with metric the usual Euclidean distance
(as in Problems 15-16 of Section 2.2), then isometries are found by taking
f(u) = u + v for a vector v (translations), by rotations (around any center),
by reflection in any line, and compositions of these.

It will be shown that any metric space S is isometric to a dense subset of a
complete one, 7. In a classic example, S is the space QQ of rational numbers
and T = R. In fact, this has sometimes been used as a definition of R.

2.5.1. Theorem Let (S, d) be any metric space. Then there is a complete
metric space (T, e) and an isometry f from S onto a dense subset of T

Remarks. Since f preserves the only given structure on S (the metric), we
can consider S as a subset of T. T is called the completion of S.

Proof. Let f((y):=d(x,y),x,y€S.Chooseapointu € S andlet F(S, d):=
{fu + 8:8€Cu(S,d)}. On F(S,d), let e:=dg,. Although functions in
F (S, d) may be unbounded (if S is unbounded for d), their differences are
bounded, and e is a well-defined metric on F(S, d). For any x, y, and z in
S,|d(x,z) —d(y,z)] < d(x,y) by the triangle inequality, and equality is
attained for z = x or y. Thus f, is continuous for any z € S, and for any x, y,
we have f), — fi € Cp(S, d) and dyp(fx, f,) = d(x, y). Also, f, € F(S,d),
and F (S, d) does not depend on the choice of u. It follows that the function
x = fy from S into F(S, d) is an isometry for d and e. Let T be the closure
of the range of this function in F (S, d). Since (Cp(S, d), dyyp) is complete
(Theorem 2.4.9), so is F(S, d). Thus (T, e) is complete, so it serves as a
completion of (S, d). d
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Let (7, ¢') and f’ also satisfy the conclusion of Theorem 2.5.1 in place of
(T, e) and f, respectively. Then on the range of f, f’ o f~! is an isometry of
a dense subset of T onto a dense subset of 7”. This isometry extends naturally
to an isometry of T onto 7', since both (T, ¢) and (7', ¢’) are complete. Thus
(T, e) is uniquely determined up to isometry, and it makes sense to call it “the
completion” of S.

If a space is complete to begin with, as R is, then the completion does not
add any new points, and the space equals (is isometric to) its completion.

A set A in a topological space S is called nowhere dense iff for every non-
empty open set U C S there is a non-empty open V C U with ANV = ¢.
Recall that a topological space (S, 7) is called separable iff S has a countable
dense subset.

In [0, 1], for example, any finite set is nowhere dense, and a countable
union of finite sets is countable. The union may be dense, but it has dense
complement. This is an instance of the following fact:

2.5.2. Category Theorem Let (S,d) be any complete metric space. Let
Ay, Ay, ..., be a sequence of nowhere dense subsets of S. Then their union
U,>1 An has dense complement.

Proof. If S is empty, the statement holds vacuously. Otherwise, choose x; € §
and 0 < ¢; < 1. Recursively choose x, € S and ¢, > 0, with e, < 1/n, such
that for all n,

B(xn+19 8n+1) C B(xnv Sn/z)\An'

This is possible since A, is nowhere dense. Then d(x,,, x,) < 1/n for all
m > n, so {x,} is a Cauchy sequence. It converges to some x with d(x,, x) <
&,/2 for all n, so d(x,+1,Xx) < €,41/2 < €441 and x ¢ A,,. Since x; € S and
&1 > 0 were arbitrary, and the balls B(x, &;) form a base for the topology,
S\ U, An is dense. O

A union of countably many nowhere dense sets is called a set of first
category. Sets not of first category are said to be of second category. (This
terminology is not related to other uses of the word “category” in mathematics,
as in homological algebra.) The category theorem (2.5.2) then says that every
complete metric space S is of second category. Also if A is of first category,
then S\ A is of second category. A metric space (S, d) is called topologically
complete iff there is some metric e on S with the same topology as d such that
(S, e) is complete. Since the conclusion of the category theorem is in terms
of topology, not depending on the specific metric, the theorem also holds in
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topologically complete spaces. For example, (—1, 1) is not complete with its
usual metric but is complete for the metric e(x, y) :=|f(x) — f(y)|, where
f(x):= tan(wrx /2).

By definition of topology, any union of open sets, or the intersection of
finitely many, is open. In general, an intersection of countably many open
sets need not be open. Such a set is called a G5 (from German Gebiet-
Durchschnitt). The complement of a G, that is, a union of countably many
closed sets, is called an F,, (from French fermé-somme).

For any metric space (S,d), A C S,and x € §, let

d(x, A) :=inf{d(x, y):y € A}.

For any x and z in S and y in A, from d(x, y) < d(x, z) + d(z, y), taking
the infimum over y in A gives

d(x,A) <d(x,z)+d(z, A)
and since x and z can be interchanged,
|d(x, A) —d(x, A)| <d(x, 2). (2.5.3)

Here is a characterization of topologically complete metric spaces. It ap-
plies, for example, to the set of all irrational numbers in R, which at first sight
looks quite incomplete.

*2.5.4. Theorem A metric space (S, d) is topologically complete if and only
if S is a G in its completion for d.

Proof. By the completion theorem (2.5.1) we can assume that S is a dense
subset of T and (T, d) is complete.

To prove “if,” suppose S = (), U, with each U, openin 7. Let f,(x):=
1/d(x, T\U,) for eachn and x € S. Let g(t) :=¢/(1 4+ t). As in Propositions
2.4.3 and 2.4.4 (metrization of countable products), let

e(x, y)i=d(x, y) + ) 27"g(| fo(x) = fu(MI)

for any x and y in S. Then e is a metric on S.

Let {x,,} be a Cauchy sequence in S for e. Then since d < e, {x,,} is also
Cauchy for d and converges for d to some x € T. For each n, f,(x,,) con-
verges as m — oo to some a, < oo. Thus d(x,, T\U,) — 1/a, > 0 and
x ¢ T\U, foralln,sox € S.

For any set F, by (2.5.3) the function d(-, F') is continuous. So on S, all the
[ are continuous, and convergence for d implies convergence for e. Thus d
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and e metrize the same topology, and x,, — x for e. So S is complete for e,
as desired.

Conversely, let e be any metric on S with the same topology as d such that
(S, e) is complete. For any ¢ > 0 let

U,(e) :={x € T:diam (S N By(x, &)) < 1/n},

where diam denotes diameter with respect to e, and B; denotes a ball with
respect to d. Let U, := |J,_, U,(¢). For any x and v, if x € U,(¢) and
d(x,v) < ¢e/2,thenv € U,(g/2). Thus U, isopenin T.

Now S C U, for all n, since d and e have the same topology. If x € U,
for all n, take x,, € S with d(x,,, x) — 0. Then {x,,} is also Cauchy for e,
by definition of the U, and U, (¢). Thus e(x,,, y) — 0 for some y € S, so
x=yes. O

In a metric space (X,d), if x, - x and for each n, x,, — x, as
m — oo, then for some m(n), X,u) — x: we can choose m(n) such that
d(Xum@y, Xn) < 1/n. This iterated limit property fails, however, in some non-
metrizable topological spaces, such as 2F with product topology. For example,
there are finite F(n) with 1, — 1g in 2%, and for any finite F there are
open U (m) with 1y, — 1r. However:

*2.5.5. Proposition There is no sequence U(1), U(2), ..., of open sets in
R with 1y — 1o in 2% asm — oo.

Proof. Suppose 1y — 1g.Let X := (,~1 U,=,, U(n). Then X is an inter-
section of countably many dense open sets. Hence R\ X is of first category.
Butif X = Q, then R is of first category, contradicting the category theorem
(2.5.2). O

This gives an example of a space that is not topologically complete:

*2.5.6. Corollary Q is not a Gs in R and hence is not topologically
complete.

Next, (topological) completeness will be shown to be preserved by
countable Cartesian products. This will probably not be surprising. For
example, a product of a sequence of compact metric spaces is metrizable
by Proposition 2.4.4 and compact by Tychonoff’s theorem, and so complete
by Theorem 2.3.1 (in this case for any metric metrizing its topology).
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2.5.7. Theorem Let (S,,d,) forn = 1,2,..., be a sequence of complete
metric spaces. Then the Cartesian product I1,S,, with product topology, is
complete with the metric d of Proposition 2.4.4.

Proof. A Cauchy sequence {x,},>1 in the product space is a sequence of
sequences {{X,;}n>1}m>1. For any fixed n, as m and k — oo, and since d is
a sum of nonnegative terms, f(d,(Xpn, Xkn))/2" — 0, so d,(Xun, Xkn) = O,
and {x;,};>1 is a Cauchy sequence for d,, so it converges to some x, in
S,. Since this holds for each n, the original sequence in the product space
converges for the product topology, and so for d by Proposition 2.4.4. O

Problems
1. Show that the closure of a nowhere dense set is nowhere dense.

2. Let (S,d) and (V, e) be two metric spaces. On the Cartesian product
S x V take the metric

p((x,u), (y,v)) =d(x, y) +e(u, v).

Show that the completion of S x V is isometric to the product of the
completions of S and of V.

3. Show that the intersection of the complement of a set of first category with
a non-empty open set in a complete metric space is not only non-empty
but uncountable. Hint: Are singleton sets {x} nowhere dense?

4. Show that the set R\Q of irrational numbers, with usual topology (relative
topology from R), is topologically complete.

5. Define a complete metric for R\{0, 1} with usual (relative) topology.
6. Define a complete metric for the usual (relative) topology on R\ Q.

7. (a) If (S, d) is a complete metric space, X is a G4 subset of S, and for
the relative topology on X, Y is a G5 subset of X, show that Y is a
Gg in S.
(b) Prove the same for a general topological space S.

8. Show that the plane R? is not a countable union of lines (a line is a set
{{(x, y):ax + by = ¢} where a and b are not both 0).

9. A C! curve is a function t > (f(1), g(¢)) from R into R? where the
derivatives f’(t) and g’(¢) exist and are continuous for all 7. Show that
IR? is not a countable union of ranges of a C! curves. Hint: Show that the
range of a C! curve on a finite interval is nowhere dense.
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10. Let(S, d) be any noncompact metric space. Show that there exist bounded
continuous functions f,, on S such that f,(x) | O for all x € S but f, do
not converge to 0 uniformly. Hint: S is either not complete or not totally
bounded.

11. Show that a metric space (S, d) is complete for every metric e metrizing
its topology if and only if it is compact. Hint: Apply Theorem 2.3.1.
Suppose d(x,,, x,) > & > 0 for all m # n integers > 1. For any integers
Jj. k> 1let

ejr(x, y)i=dx,x;) + i — k7 Me +d(y, xp).

Lete(x, y) := min(d(x, y), inf; yex(x, ¥)). To show that for any j, k, r,
ands,and any x, y,z € S, e;5(x, 2) < ejx(x, y) +e.(y, 2), consider the
casesk =rand k #r.

*2.6. Extension of Continuous Functions

The problem here is, given a continuous real-valued function f defined on a
subset F’ of atopological space S, when can f be extended to be continuous on
all of §? Consider, for example, the set R\{0} C R. The function f(x):=1/x
is continuous on R\ {0} but cannot be extended to be continuous at 0. Likewise,
the bounded function sin (1/x) is continuous except at 0. As these examples
show, it is not possible generally to make the extension unless F is closed.
If F is closed, the extension will be shown to be possible for metric spaces,
compact Hausdorff spaces, and a class of spaces including both, called normal
spaces, defined as follows.

Sets are called disjoint iff their intersection is empty. A topological space
(S, 7) is called normal iff for any two disjoint closed sets E and F there are
disjoint open sets U and V with E C U and F C V. First it will be shown
that some other general properties imply normality.

2.6.1. Theorem Every metric space (S, d) is normal.

Proof. For any set A C S and x €S let d(x, A):= infycad(x, y). Then
d(-,A) is continuous, by (2.5.3). For any disjoint closed sets E and F, let
g(x):=d(x, E)/d(x, E)+d(x, F)). Since E is closed, d(x, E) = 0 if and
onlyifx € E, and likewise for F. Since E and F are disjoint, the denominator
in the definition of g is never 0, so g is continuous. Now 0 < g(x) < 1 for
all x, with g(x) = 0iff x € E, and g(x) = l ifand only if x € F. Let U :=
g (=00, 1/3)), V :=g~1((2/3, 0)). Then clearly U and V have the desired
properties. O
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2.6.2. Theorem Every compact Hausdorff space is normal.

Proof. Let E and F be disjoint and closed. For each x € E and y € F, take
open Uy, and Vy, withx € Uy, y € Vy,, and U,, NV, = @. For each fixed
¥, {Uxy}xee form an open cover of the closed, hence (by Theorem 2.2.2)
compact set E. So there is a finite subcover, {Uy, }ycE(y) for some finite subset
E()CE. Let Uy:= U, ck(y) Urys Vs i= [rek(y) Vox- Then for each y, Uy
and V, are open, E C Uy,y € Yy, and Uy NY, = @. The V, form an open
cover of the compact set F' and hence have an open subcover {V,},c for
some finite G C F. Let U:= (.5 Uy, V= ;e Vy- Then U and V are
open and disjoint, E C U,and F C V. O

The next fact will give an extension if the original continuous function
has only two values, 0 and 1, as was done for a metric space in the proof of
Theorem 2.6.1. This will then help in the proof of the more general extension
theorem.

2.6.3. Urysohn’s Lemma Foranynormaltopological space (X, T) and dis-
joint closed sets E and F, there is a continuous real f on X with f(x) =0
forallx € E, f(y)=1forally € F,and 0 < f <1 everywhere on X.

Proof. For each dyadic rational ¢ = m/2", wheren = 0,1,...,and m =
0,1,...,2", sothat 0 < ¢ < 1, first choose a unique representation such
that m is odd or m = n = 0. For such ¢, m, and n, an open set U, :=U,,,
and a closed set F; = F,, will be defined by recursion on n as follows. For
n=0letUy:= @, Fo:=E,U;:=X\F,and F; := X. Now suppose the U,
and F,,; have been defined for 0 < j < n, with U, C F, C U; C F; for
r < s. These inclusions do hold for n = 0. Let ¢ = (2k + 1)/2"*!. Then
forr = k/2" and s = (k 4+ 1)/2", F, C U, so F, is disjoint from the closed
set X\U,. By normality take disjoint open sets U, and V, with F, C U, and
X\U, C V,. Let F,:= X\V,. Then as desired, F, C U, C F, C Uy, so all
the F, and U, are defined recursively.

Let f(x):= inf{g:x € F;}. Then0 < f(x) < 1forallx, f =0OonE,
and f = lon F. Forany y € [0, 1], f(x) > y if and only if for some
dyadic rational ¢ > y,x € X\F,. Thus {x: f(x) > y} is a union of open
sets and hence is open. Next, f(x) < ¢ if and only if for some dyadic rational
q <t,x € Fy,and so x € U, for some dyadic rational r withgq < r < 1.
So {x: f(x) < t} is also a union of open sets and hence is open. So for any
open interval (y, 1), f~'((y, t)) is open. Taking unions, it follows that f is
continuous. O
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Now here is the main result of this section:

2.6.4. Extension Theorem (Tietze-U